Nikolay V. Koldunov
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolay V. Koldunov.
Journal of Geophysical Research | 2009
Igor A. Dmitrenko; Sergey Kirillov; Vladimir V. Ivanov; Rebecca A. Woodgate; Igor V. Polyakov; Nikolay V. Koldunov; Louis Fortier; Catherine Lalande; Lars Kaleschke; Dorothea Bauch; Jens Hölemann; Leonid Timokhov
up to 75% of the total variance. Our data suggest that the entire AW layer down to at least 840 m is affected by seasonal cycling, although the strength of the seasonal signal in temperature and salinity reduces from 260 m (±0.25C and ±0.025 psu) to 840 m (±0.05C and ±0.005 psu). The seasonal velocity signal is substantially weaker, strongly masked by high-frequency variability, and lags the thermohaline cycle by 45–75 days. We hypothesize that our mooring record shows a time history of the along-margin propagation of the AW seasonal signal carried downstream by the AW boundary current. Our analysis suggests that the seasonal signal in the Fram Strait Branch of AW (FSBW) at 260 m is predominantly translated from Fram Strait, while the seasonality in the Barents Sea branch of AW (BSBW) domain (at 840 m) is attributed instead to the seasonal signal input from the Barents Sea. However, the characteristic signature of the BSBW seasonal dynamics observed through the entire AW layer leads us to speculate that BSBW also plays a role in seasonally modifying the properties of the FSBW.
Advances in Meteorology | 2012
Vladimir V. Ivanov; Vladimir A. Alexeev; Irina Repina; Nikolay V. Koldunov; Alexander Smirnov
We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW) inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.
Journal of Physical Oceanography | 2016
Vladimir Ivanov; Vladimir A. Alexeev; Nikolay V. Koldunov; Irina Repina; Anne Britt Sandø; Lars Henrik Smedsrud; Alexander Smirnov
AbstractBroad, long-living, ice-free areas in midwinter northeast of Svalbard between 2011 and 2014 are investigated. The formation of these persistent and reemerging anomalies is linked, hypothetically, with the increased seasonality of Arctic sea ice cover, enabling an enhanced influence of oceanic heat on sea ice and, in particular, heat transported by Atlantic Water. The “memory” of ice-depleted conditions in summer is transferred to the fall season through excess heat content in the upper mixed layer, which in turn transfers to midwinter via thinner and younger ice. This thinner ice is more fragile and mobile, thus facilitating the formation of polynyas and leads. When openings in ice cover form along the Atlantic Water pathway, weak density stratification at the mixed layer base supports the development of thermohaline convection, which further entrains warm and salty water from deeper layers. Convection-induced upward heat flux from the Atlantic layer retards ice formation, either keeping ice thick...
Journal of Geophysical Research | 2014
Nikolay V. Koldunov; Nuno Serra; Armin Köhl; Detlef Stammer; Olivier Henry; Anny Cazenave; P. Prandi; Per Knudsen; Ole Baltazar Andersen; Yongqi Gao; Johnny A. Johannessen
The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970–2009) are analyzed. In comparison to observations, all tested models broadly reproduce the mean SSH in the Arctic and reveal a good correlation with both tide gauge data and SSH anomalies derived from satellite observations. Although the models do not represent the positive Arctic SSH trend observed over the last two decades, their interannual-to-decadal SSH variability is in reasonable agreement with available measurements. Focusing on results from one of the models for a detailed analysis, it is shown that the decadal-scale SSH variability over shelf areas and deep parts of the Arctic Ocean have pronounced differences that are determined mostly by salinity variations. A further analysis of the three time periods 1987–1992, 1993–2002, and 2003–2009, corresponding to the transition times between cyclonic and anticyclonic regimes of the atmospheric circulation over the Arctic, revealed an unusual increase of SSH in the Amerasian basin during 2003–2009. Results from this model support the recent finding that the increase is caused mainly by changes in freshwater content brought about by the freshwater export through the Canadian Arctic Archiplago and increased Ekman pumping in the Amerasian basin and partly by lateral freshwater transport changes, leading to a redistribution of low-salinity shelf water. Overall, we show that present-day models can be used for investigating the reasons for low-frequency SSH variability in the region.
Journal of Climate | 2010
Nikolay V. Koldunov; Detlef Stammer; Jochem Marotzke
Abstract As a contribution to a detailed evaluation of Intergovernmental Panel on Climate Change (IPCC)-type coupled climate models against observations, this study analyzes Arctic sea ice parameters simulated by the Max-Planck-Institute for Meteorology (MPI-M) fully coupled climate model ECHAM5/Max-Planck-Institute for Meteorology Hamburg Primitive Equation Ocean Model (MPI-OM) for the period from 1980 to 1999 and compares them with observations collected during field programs and by satellites. Results of the coupled run forced by twentieth-century CO2 concentrations show significant discrepancies during summer months with respect to observations of the spatial distribution of the ice concentration and ice thickness. Equally important, the coupled run lacks interannual variability in all ice and Arctic Ocean parameters. Causes for such big discrepancies arise from errors in the ECHAM5/MPI-OM atmosphere and associated errors in surface forcing fields (especially wind stress). This includes mean bias patt...
Tellus A | 2014
Dmitry Sein; Nikolay V. Koldunov; Joaquim G. Pinto; William Cabos
The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.
Climate Dynamics | 2017
William Cabos; Dmitry Sein; Joaquim G. Pinto; Andreas H. Fink; Nikolay V. Koldunov; Alvarez Fj; Alfredo Izquierdo; Noel Keenlyside; Daniela Jacob
The key role of the South Atlantic Anticyclone (SAA) on the seasonal cycle of the tropical Atlantic is investigated with a regionally coupled atmosphere–ocean model for two different coupled domains. Both domains include the equatorial Atlantic and a large portion of the northern tropical Atlantic, but one extends southward, and the other northwestward. The SAA is simulated as internal model variability in the former, and is prescribed as external forcing in the latter. In the first case, the model shows significant warm biases in sea surface temperature (SST) in the Angola-Benguela front zone. If the SAA is externally prescribed, these biases are substantially reduced. The biases are both of oceanic and atmospheric origin, and are influenced by ocean–atmosphere interactions in coupled runs. The strong SST austral summer biases are associated with a weaker SAA, which weakens the winds over the southeastern tropical Atlantic, deepens the thermocline and prevents the local coastal upwelling of colder water. The biases in the basins interior in this season could be related to the advection and eddy transport of the coastal warm anomalies. In winter, the deeper thermocline and atmospheric fluxes are probably the main biases sources. Biases in incoming solar radiation and thus cloudiness seem to be a secondary effect only observed in austral winter. We conclude that the external prescription of the SAA south of 20°S improves the simulation of the seasonal cycle over the tropical Atlantic, revealing the fundamental role of this anticyclone in shaping the climate over this region.
Journal of Climate | 2012
Igor A. Dmitrenko; Sergey Kirillov; V. V. Ivanov; Bert Rudels; Nuno Serra; Nikolay V. Koldunov
Historical hydrographic data (1940s–2010) show a distinct cross-slope difference of the lower halocline water (LHW) over the Laptev Sea continental margins. Over the slope, the LHW is on average warmer and saltier by 0.2°C and 0.5 psu, respectively, relative to the off-slope LHW. The LHW temperature time series constructed from the on-slope historical records are related to the temperature of the Atlantic Water (AW) boundary current transporting warm water from the North Atlantic Ocean. In contrast, the on-slope LHW salinity is linked to the sea ice and wind forcing over the potential upstream source region in the Barents and northern Kara Seas, as also indicated by hydrodynamic model results. Over the Laptev Sea continental margin, saltier LHW favors weaker salinity stratification that, in turn, contributes to enhanced vertical mixing with underlying AW.
Journal of Advances in Modeling Earth Systems | 2017
Dmitry Sein; Nikolay V. Koldunov; Sergey Danilov; Qiang Wang; Dmitry Sidorenko; Irina Fast; Thomas Rackow; William Cabos; Thomas Jung
We discuss the performance of the Finite Element Ocean Model (FESOM) on locally eddy-resolving global unstructured meshes. In particular, the utility of the mesh design approach whereby mesh horizontal resolution is varied as half the Rossby radius in most of the model domain is explored. Model simulations on such a mesh (FESOM-XR) are compared with FESOM simulations on a smaller-size mesh, where refinement depends only on the pattern of observed variability (FESOM-HR). We also compare FESOM results to a simulation of the ocean model of the Max Planck Institute for Meteorology (MPIOM) on a tripolar regular grid with refinement toward the poles, which uses a number of degrees of freedom similar to FESOM-XR. The mesh design strategy, which relies on the Rossby radius and/or the observed variability pattern, tends to coarsen the resolution in tropical and partly subtropical latitudes compared to the regular MPIOM grid. Excessive variations of mesh resolution are found to affect the performance in other nearby areas, presumably through dissipation that increases if resolution is coarsened. The largest improvement shown by FESOM-XR is a reduction of the surface temperature bias in the so-called North-West corner of the North Atlantic Ocean where horizontal resolution was increased dramatically. However, other biases in FESOM-XR remain largely unchanged compared to FESOM-HR. We conclude that resolving the Rossby radius alone (with two points per Rossby radius) is insufficient, and that careful use of a priori information on eddy dynamics is required to exploit the full potential of ocean models on unstructured meshes.
Journal of Geophysical Research | 2018
M. G. Akperov; Annette Rinke; I. I. Mokhov; Heidrun Matthes; Vladimir A. Semenov; Muralidhar Adakudlu; John J. Cassano; Jesper Christensen; Mariya A. Dembitskaya; Klaus Dethloff; Xavier Fettweis; Justin M. Glisan; Oliver Gutjahr; Günther Heinemann; Torben Koenigk; Nikolay V. Koldunov; René Laprise; Ruth Mottram; Oumarou Nikiema; J. F. Scinocca; Dmitry Sein; Stefan Sobolowski; Katja Winger; Wenxin Zhang
The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables. (Less)