Nikolozi Shkriabai
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolozi Shkriabai.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Amit Sharma; Ross C. Larue; Matthew R. Plumb; Nirav Malani; Frances Male; Alison Slaughter; Jacques J. Kessl; Nikolozi Shkriabai; Elizabeth Coward; Sriram Aiyer; Patrick L. Green; Li Wu; Monica J. Roth; Frederic D. Bushman; Mamuka Kvaratskhelia
The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus, suggestive of targeting by binding to cellular factors. γ-Retroviral murine leukemia virus (MLV) DNA integration into the host genome is favored at transcription start sites, but the underlying mechanism for this preference is unknown. Here, we have identified bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as cellular-binding partners of MLV integrase. We show that purified recombinant Brd4(1-720) binds with high affinity to MLV integrase and stimulates correct concerted integration in vitro. JQ-1, a small molecule that selectively inhibits interactions of BET proteins with modified histone sites impaired MLV but not HIV-1 integration in infected cells. Comparison of the distribution of BET protein-binding sites analyzed using ChIP-Seq data and MLV-integration sites revealed significant positive correlations. Antagonism of BET proteins, via JQ-1 treatment or RNA interference, reduced MLV-integration frequencies at transcription start sites. These findings elucidate the importance of BET proteins for MLV integration efficiency and targeting and provide a route to developing safer MLV-based vectors for human gene therapy.
Journal of Biological Chemistry | 2008
Christopher J. McKee; Jacques J. Kessl; Nikolozi Shkriabai; Mohd Jamal Dar; Alan Engelman; Mamuka Kvaratskhelia
The mandatory integration of the reverse-transcribed HIV-1 genome into host chromatin is catalyzed by the viral protein integrase (IN), and IN activity can be regulated by numerous viral and cellular proteins. Among these, LEDGF has been identified as a cellular cofactor critical for effective HIV-1 integration. The x-ray crystal structure of the catalytic core domain (CCD) of IN in complex with the IN binding domain (IBD) of LEDGF has furthermore revealed essential protein-protein contacts. However, mutagenic studies indicated that interactions between the full-length proteins were more extensive than the contacts observed in the co-crystal structure of the isolated domains. Therefore, we have conducted detailed biochemical characterization of the interactions between full-length IN and LEDGF. Our results reveal a highly dynamic nature of IN subunit-subunit interactions. LEDGF strongly stabilized these interactions and promoted IN tetramerization. Mass spectrometric protein footprinting and molecular modeling experiments uncovered novel intra- and inter-protein-protein contacts in the full-length IN-LEDGF complex that lay outside of the observable IBD-CCD structure. In particular, our studies defined the IN tetramer interface important for enzymatic activities and high affinity LEDGF binding. These findings provide new insight into how LEDGF modulates HIV-1 IN structure and function, and highlight the potential for exploiting the highly dynamic structure of multimeric IN as a novel therapeutic target.
Journal of Biological Chemistry | 2009
Steven M. Shell; Zhengke Li; Nikolozi Shkriabai; Mamuka Kvaratskhelia; Chris A. Brosey; Moises A. Serrano; Walter J. Chazin; Phillip R. Musich; Yue Zou
In response to DNA damage, eukaryotic cells activate a series of DNA damage-dependent pathways that serve to arrest cell cycle progression and remove DNA damage. Coordination of cell cycle arrest and damage repair is critical for maintenance of genomic stability. However, this process is still poorly understood. Nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint are the major pathways responsible for repair of UV-induced DNA damage. Here we show that ATR physically interacts with the NER factor Xeroderma pigmentosum group A (XPA). Using a mass spectrometry-based protein footprinting method, we found that ATR interacts with a helix-turn-helix motif in the minimal DNA-binding domain of XPA where an ATR phosphorylation site (serine 196) is located. XPA-deficient cells complemented with XPA containing a point mutation of S196A displayed a reduced repair efficiency of cyclobutane pyrimidine dimers as compared with cells complemented with wild-type XPA, although no effect was observed for repair of (6-4) photoproducts. This suggests that the ATR-dependent phosphorylation of XPA may promote NER repair of persistent DNA damage. In addition, a K188A point mutation of XPA that disrupts the ATR-XPA interaction inhibits the nuclear import of XPA after UV irradiation and, thus, significantly reduced DNA repair efficiency. By contrast, the S196A mutation has no effect on XPA nuclear translocation. Taken together, our results suggest that the ATR-XPA interaction mediated by the helix-turn-helix motif of XPA plays an important role in DNA-damage responses to promote cell survival and genomic stability after UV irradiation.
Journal of Biological Chemistry | 2013
Lei Feng; Amit Sharma; Alison Slaughter; Nivedita Jena; Yasuhiro Koh; Nikolozi Shkriabai; Ross C. Larue; Pratiq A. Patel; Hiroaki Mitsuya; Jacques J. Kessl; Alan Engelman; James R. Fuchs; Mamuka Kvaratskhelia
Background: The A128T substitution in HIV-1 integrase (IN) confers resistance to allosteric integrase inhibitors (ALLINIs). Results: The A128T substitution does not significantly alter ALLINI IC50 values for IN-LEDGF/p75 binding but confers marked resistance to ALLINI-induced aberrant integrase multimerization. Conclusion: Allosteric perturbation of HIV-1 integrase multimerization underlies ALLINI antiviral activity. Significance: Our findings underscore the mechanism of ALLINI action and will facilitate development of second-generation compounds. Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a very promising new class of anti-HIV-1 agents that exhibit a multimodal mechanism of action by allosterically modulating IN multimerization and interfering with IN-lens epithelium-derived growth factor (LEDGF)/p75 binding. Selection of viral strains under ALLINI pressure has revealed an A128T substitution in HIV-1 IN as a primary mechanism of resistance. Here, we elucidated the structural and mechanistic basis for this resistance. The A128T substitution did not affect the hydrogen bonding between ALLINI and IN that mimics the IN-LEDGF/p75 interaction but instead altered the positioning of the inhibitor at the IN dimer interface. Consequently, the A128T substitution had only a minor effect on the ALLINI IC50 values for IN-LEDGF/p75 binding. Instead, ALLINIs markedly altered the multimerization of IN by promoting aberrant higher order WT (but not A128T) IN oligomers. Accordingly, WT IN catalytic activities and HIV-1 replication were potently inhibited by ALLINIs, whereas the A128T substitution in IN resulted in significant resistance to the inhibitors both in vitro and in cell culture assays. The differential multimerization of WT and A128T INs induced by ALLINIs correlated with the differences in infectivity of HIV-1 progeny virions. We conclude that ALLINIs primarily target IN multimerization rather than IN-LEDGF/p75 binding. Our findings provide the structural foundations for developing improved ALLINIs with increased potency and decreased potential to select for drug resistance.
Nucleic Acids Research | 2011
Jacques J. Kessl; Min Li; Michael Ignatov; Nikolozi Shkriabai; Jocelyn O. Eidahl; Lei Feng; Karin Musier-Forsyth; Robert Craigie; Mamuka Kvaratskhelia
A tetramer of HIV-1 integrase (IN) stably associates with the viral DNA ends to form a fully functional concerted integration intermediate. LEDGF/p75, a key cellular binding partner of the lentiviral enzyme, also stabilizes a tetrameric form of IN. However, functional assays have indicated the importance of the order of viral DNA and LEDGF/p75 addition to IN for productive concerted integration. Here, we employed Förster Resonance Energy Transfer (FRET) to monitor assembly of individual IN subunits into tetramers in the presence of viral DNA and LEDGF/p75. The IN–viral DNA and IN–LEDGF/p75 complexes yielded significantly different FRET values suggesting two distinct IN conformations in these complexes. Furthermore, the order of addition experiments indicated that FRET for the preformed IN–viral DNA complex remained unchanged upon its subsequent binding to LEDGF/p75, whereas pre-incubation of LEDGF/p75 and IN followed by addition of viral DNA yielded FRET very similar to the IN–LEDGF/p75 complex. These findings provide new insights into the structural organization of IN subunits in functional concerted integration intermediates and suggest that differential multimerization of IN in the presence of various ligands could be exploited as a plausible therapeutic target for development of allosteric inhibitors.
Molecular Pharmacology | 2009
Jacques J. Kessl; Jocelyn O. Eidahl; Nikolozi Shkriabai; Zhuojun Zhao; Christopher J. McKee; Sonja Hess; Terrence R. Burke; Mamuka Kvaratskhelia
HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-l-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.
Retrovirology | 2010
Nidhanapati K. Raghavendra; Nikolozi Shkriabai; Robert L. J. Graham; Sonja Hess; Mamuka Kvaratskhelia; Li Wu
An integrated HIV-1 genomic DNA leads to an infected cell becoming either an active or a latent virus-producing cell. Upon appropriate activation, a latently infected cell can result in production of progeny viruses that spread the infection to uninfected cells. The host proteins influence several steps of HIV-1 infection including formation of the preintegration complex (PIC), a key nucleoprotein intermediate essential for integration of reverse transcribed viral DNA into the chromosome. Much effort has gone into the identification of host proteins contributing to the assembly of functional PICs. Experimental approaches included the use of yeast two-hybrid system, co-immunoprecipitation, affinity tagged HIV-1 viral proteins and in vitro reconstitution of salt-stripped PIC activity. Several host proteins identified using these approaches have been shown to affect HIV-1 replication in cells and influence catalytic activities of recombinant IN in vitro. However, the comprehensive identification and characterization of host proteins associated with HIV-1 PICs of infected cells have been hindered in part by the technical limitation in acquiring sufficient amount of catalytically active PICs. To efficiently identify additional host factors associated with PICs in infected cells, we have developed the following novel approach. The catalytically active PICs from HIV-1-infected CD4+ cells were isolated using biotinylated target DNA, and the proteins selectively co-purifying with PICs have been analyzed by mass spectrometry. This technology enabled us to reveal at least 19 host proteins that are associated with HIV-1 PICs, of which 18 proteins have not been described previously with respect to HIV-1 integration. Physiological functions of the identified proteins range from chromatin organization to protein transport. A detailed characterization of these host proteins could provide new insights into the mechanism of HIV-1 integration and uncover new antiviral targets to block HIV-1 integration.
Journal of Biological Chemistry | 2012
Ross C. Larue; Kushol Gupta; Christiane Wuensch; Nikolozi Shkriabai; Jacques J. Kessl; Eric M. Danhart; Lei Feng; Oliver Taltynov; Frauke Christ; Gregory D. Van Duyne; Zeger Debyser; Mark P. Foster; Mamuka Kvaratskhelia
Background: TNPO3 is a key cellular factor involved in early steps of HIV-1 replication. Results: TNPO3 is highly structured, interacts with the HIV-1 intasome by engaging the C-terminal domain of integrase, and does not directly bind capsid tubes. Conclusion: TNPO3 interacts with HIV-1 intasomes and not capsid cores. Significance: Our findings aid future genetic analysis to elucidate the role of TNPO3 in HIV-1 replication. Transportin 3 (TNPO3 or TRN-SR2) has been shown to be an important cellular factor for early steps of lentiviral replication. However, separate studies have implicated distinct mechanisms for TNPO3 either through its interaction with HIV-1 integrase or capsid. Here we have carried out a detailed biophysical characterization of TNPO3 and investigated its interactions with viral proteins. Biophysical analyses including circular dichroism, analytical ultracentrifugation, small-angle x-ray scattering, and homology modeling provide insight into TNPO3 architecture and indicate that it is highly structured and exists in a monomer-dimer equilibrium in solution. In vitro biochemical binding assays argued against meaningful direct interaction between TNPO3 and the capsid cores. Instead, TNPO3 effectively bound to the functional intasome but not to naked viral DNA, suggesting that TNPO3 can directly engage the HIV-1 IN tetramer prebound to the cognate DNA. Mass spectrometry-based protein footprinting and site-directed mutagenesis studies have enabled us to map several interacting amino acids in the HIV-1 IN C-terminal domain and the cargo binding domain of TNPO3. Our findings provide important information for future genetic analysis to better understand the role of TNPO3 and its interacting partners for HIV-1 replication.
Journal of Biological Chemistry | 2011
Arnaz Ranji; Nikolozi Shkriabai; Mamuka Kvaratskhelia; Karin Musier-Forsyth; Kathleen Boris-Lawrie
The DExH protein RNA helicase A (RHA) plays numerous roles in cell physiology, and post-transcriptional activation of gene expression is a major role among them. RHA selectively activates translation of complex cellular and retroviral mRNAs. Although RHA requires interaction with structural features of the 5′-UTR of these target mRNAs, the molecular basis of their translation activation by RHA is poorly understood. RHA contains a conserved ATPase-dependent helicase core that is flanked by two α-β-β-β-α double-stranded RNA-binding domains at the N terminus and repeated arginine-glycine residues at the C terminus. The individual recombinant N-terminal, central helicase, and C-terminal domains were evaluated for their ability to specifically interact with cognate RNAs by in vitro biochemical measurements and mRNA translation assays in cells. The results demonstrate that N-terminal residues confer selective interaction with retroviral and junD target RNAs. Conserved lysine residues in the distal α-helix of the double-stranded RNA-binding domains are necessary to engage structural features of retroviral and junD 5′-UTRs. Exogenous expression of the N terminus coprecipitates junD mRNA and inhibits the translation activity of endogenous RHA. The results indicate that the molecular basis for the activation of translation by RHA is recognition of target mRNA by the N-terminal domain that tethers the ATP-dependent helicase for rearrangement of the complex 5′-UTR.
Journal of Biological Chemistry | 2011
Rajaneesh Anupam; Antara Datta; Matthew Kesic; Kari B. Green-Church; Nikolozi Shkriabai; Mamuka Kvaratskhelia; Michael D. Lairmore
Human T-lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T cell leukemia/lymphoma and a variety of inflammatory disorders. HTLV-1 encodes a nuclear localizing protein, p30, that selectively alters viral and cellular gene expression, activates G2-M cell cycle checkpoints, and is essential for viral spread. Here, we used immunoprecipitation and affinity pulldown of ectopically expressed p30 coupled with mass spectrometry to identify cellular binding partners of p30. Our data indicate that p30 specifically binds to cellular ATM (ataxia telangiectasia mutated) and REGγ (a nuclear 20 S proteasome activator). Under conditions of genotoxic stress, p30 expression was associated with reduced levels of ATM and increased cell survival. Knockdown or overexpression of REGγ paralleled p30 expression, suggesting an unexpected enhancement of p30 expression in the presence of REGγ. Finally, size exclusion chromatography revealed the presence of p30 in a high molecular mass complex along with ATM and REGγ. On the basis of our findings, we propose that HTLV-1 p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival.