Nilufar Mohebbi
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nilufar Mohebbi.
Pflügers Archiv: European Journal of Physiology | 2009
Carsten A. Wagner; Olivier Devuyst; Soline Bourgeois; Nilufar Mohebbi
The renal collecting system serves the fine-tuning of renal acid–base secretion. Acid-secretory type-A intercalated cells secrete protons via a luminally expressed V-type H+-ATPase and generate new bicarbonate released by basolateral chloride/bicarbonate exchangers including the AE1 anion exchanger. Efficient proton secretion depends both on the presence of titratable acids (mainly phosphate) and the concomitant secretion of ammonia being titrated to ammonium. Collecting duct ammonium excretion requires the Rhesus protein RhCG as indicated by recent KO studies. Urinary acid secretion by type-A intercalated cells is strongly regulated by various factors among them acid–base status, angiotensin II and aldosterone, and the Calcium-sensing receptor. Moreover, urinary acidification by H+-ATPases is modulated indirectly by the activity of the epithelial sodium channel ENaC. Bicarbonate secretion is achieved by non-type-A intercalated cells characterized by the luminal expression of the chloride/bicarbonate exchanger pendrin. Pendrin activity is driven by H+-ATPases and may serve both bicarbonate excretion and chloride reabsorption. The activity and expression of pendrin is regulated by different factors including acid–base status, chloride delivery, and angiotensin II and may play a role in NaCl retention and blood pressure regulation. Finally, the relative abundance of type-A and non-type-A intercalated cells may be tightly regulated. Dysregulation of intercalated cell function or abundance causes various syndromes of distal renal tubular acidosis underlining the importance of these processes for acid–base homeostasis.
Science | 2015
Natasha N. Kumar; Ana Velic; Jorge Soliz; Yingtang Shi; Keyong Li; Sheng Wang; Janelle L. Weaver; Josh Sen; Stephen B. G. Abbott; Roman M. Lazarenko; Marie-Gabrielle Ludwig; Edward Perez-Reyes; Nilufar Mohebbi; Carla Bettoni; Max Gassmann; Thomas Suply; Klaus Seuwen; Patrice G. Guyenet; Carsten A. Wagner; Douglas A. Bayliss
Receptor in the brain controls breathing Control of breathing in mammals depends primarily not on sensing oxygen, but rather on detecting concentrations of carbon dioxide in the blood. Failure of this system can cause potentially deadly sleep apnias. Taking a hint from insects, which use a heterotrimeric guanine nucleotide–binding protein-coupled receptor (GPCR) to sense carbon dioxide, Kumar et al. demonstrate that the GPCR GPR4 is essential to control breathing in mice. GPR4 senses protons generated by the formation of carbonic acid in the blood and works with a pH-sensitive potassium channel called TASK-2 in a set of brain cells that control breathing. Science, this issue p. 1255 A G protein–coupled receptor in the brain controls respiration. Blood gas and tissue pH regulation depend on the ability of the brain to sense CO2 and/or H+ and alter breathing appropriately, a homeostatic process called central respiratory chemosensitivity. We show that selective expression of the proton-activated receptor GPR4 in chemosensory neurons of the mouse retrotrapezoid nucleus (RTN) is required for CO2-stimulated breathing. Genetic deletion of GPR4 disrupted acidosis-dependent activation of RTN neurons, increased apnea frequency, and blunted ventilatory responses to CO2. Reintroduction of GPR4 into RTN neurons restored CO2-dependent RTN neuronal activation and rescued the ventilatory phenotype. Additional elimination of TASK-2 (K2P5), a pH-sensitive K+ channel expressed in RTN neurons, essentially abolished the ventilatory response to CO2. The data identify GPR4 and TASK-2 as distinct, parallel, and essential central mediators of respiratory chemosensitivity.
Kidney International | 2014
Daniela Spichtig; Hongbo Zhang; Nilufar Mohebbi; Ivana Pavik; Katja Petzold; Gerti Stange; Lanja Saleh; Ilka Edenhofer; Stephan Segerer; Jürg Biber; Philippe Jaeger; Andreas L. Serra; Carsten A. Wagner
Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and is linked to cardiovascular disease and all-cause mortality in chronic kidney disease. FGF23 rises in patients with CKD stages 2-3, but in patients with autosomal dominant polycystic kidney disease, the increase of FGF23 precedes the first measurable decline in renal function. The mechanisms governing FGF23 production and effects in kidney disease are largely unknown. Here we studied the relation between FGF23 and mineral homeostasis in two animal models of PKD. Plasma FGF23 levels were increased 10-fold in 4-week-old cy/+ Han:SPRD rats, whereas plasma urea and creatinine concentrations were similar to controls. Plasma calcium and phosphate levels as well as TmP/GFR were similar in PKD and control rats at all time points examined. Expression and activity of renal phosphate transporters, the vitamin D3-metabolizing enzymes, and the FGF23 co-ligand Klotho in the kidney were similar in PKD and control rats through 8 weeks of age, indicating resistance to FGF23, although phosphorylation of the FGF receptor substrate 2α protein was enhanced. In the kidneys of rats with PKD, FGF23 mRNA was highly expressed and FGF23 protein was detected in cells lining renal cysts. FGF23 expression in bone and spleen was similar in control rats and rats with PKD. Similarly, in an inducible Pkd1 knockout mouse model, plasma FGF23 levels were elevated, FGF23 was expressed in kidneys, but renal phosphate excretion was normal. Thus, the polycystic kidney produces FGF23 but is resistant to its action.
Cellular Physiology and Biochemistry | 2011
Carsten A. Wagner; Nilufar Mohebbi; Giovambattista Capasso; John P. Geibel
The anion exchanger pendrin (Pds, SLC26A4) transports various anions including bicarbonate, chloride and iodide. In the kidney, pendrin is exclusively expressed on the luminal pole of bicarbonate-secretory type B intercalated cells. Genetic ablation of pendrin in mice abolishes luminal chloride-bicarbonate exchanger activity from type B intercalated cells suggesting that pendrin is the apical bicarbonate extruding pathway. The renal expression of pendrin is developmentally adapted and pendrin positive cells originate from both the uretric bud and mesenchyme. In adult kidney, pendrin expression and activity is regulated by systemic acid-base status, dietary electrolyte intake (mostly chloride), and hormones such as angiotensin II and aldosterone which can affect subcellular localization, the relative number of pendrin expressing cells, and the overall abundance consistent with a role of pendrin in maintaining normal acid-base homeostasis. This review summarizes recent findings on the role and regulation of pendrin in the context of the kidneys role in acid-base homeostasis in health and disease.
Cellular Physiology and Biochemistry | 2012
Nilufar Mohebbi; Chahira Benabbas; Solange Vidal; Arezoo Daryadel; Soline Bourgeois; Ana Velic; Marie-Gabrielle Ludwig; Klaus Seuwen; Carsten A. Wagner
The Ovarian cancer G protein-coupled Receptor 1 (OGR1; GPR68) is proton-sensitive in the pH range of 6.8 - 7.8. However, its physiological function is not defined to date. OGR1 signals via inositol trisphosphate and intracellular calcium, albeit downstream events are unclear. To elucidate OGR1 function further, we transfected HEK293 cells with active OGR1 receptor or a mutant lacking 5 histidine residues (H5Phe-OGR1). An acute switch of extracellular pH from 8 to 7.1 (10 nmol/l vs 90 nmol/l protons) stimulated NHE and H+-ATPase activity in OGR1-transfected cells, but not in H5Phe-OGR1-transfected cells. ZnCl2 and CuCl2 that both inhibit OGR1 reduced the stimulatory effect. The activity was blocked by chelerythrine, whereas the ERK1/2 inhibitor PD 098059 had no inhibitory effect. OGR1 activation increased intracellular calcium in transfected HEK293 cells. We next isolated proximal tubules from kidneys of wild-type and OGR1-deficient mice and measured the effect of extracellular pH on NHE activity in vitro. Deletion of OGR1 affected the pH-dependent proton extrusion, however, in the opposite direction as expected from cell culture experiments. Upregulated expression of the pH-sensitive kinase Pyk2 in OGR1 KO mouse proximal tubule cells may compensate for the loss of OGR1. Thus, we present the first evidence that OGR1 modulates the activity of two major plasma membrane proton transport systems. OGR1 may be involved in the regulation of plasma membrane transport proteins and intra- and/or extracellular pH.
Nephron Physiology | 2006
Carsten A. Wagner; Jana Kovacikova; Paul A. Stehberger; Christian Winter; Chahira Benabbas; Nilufar Mohebbi
Systemic acid-base homeostasis is the product of complex interactions between metabolism, regulated exhalation of CO2 by the lungs and acid or base excretion by the kidneys. The importance of renal acid-base transport has been highlighted by mutations identified in several proteins involved in this task in patients with inborn forms of renal tubular acidosis. The underlying mechanisms of disease have been further studied in genetically altered mouse models and cell culture. An interesting field of research has focused on the question how changes in metabolism or acid-base homeostasis are sensed and result in altered excretion of acid or bases by the kidney. Several hormonal pathways including aldosterone and endothelin were implicated, a novel subfamily of proton-sensing receptors has been identified, and signaling molecules described that are activated by changes in pH.
Cellular Physiology and Biochemistry | 2011
Ioana Alesutan; Arezoo Daryadel; Nilufar Mohebbi; Lisann Pelzl; Christina Leibrock; Jakob Voelkl; Soline Bourgeois; Silvia Dossena; Charity Nofziger; Markus Paulmichl; Carsten A. Wagner; Florian Lang
SLC26A4 encodes pendrin, a transporter exchanging anions such as chloride, bicarbonate, and iodide. Loss of function mutations of SLC26A4 cause Pendred syndrome characterized by hearing loss and enlarged vestibular aqueducts as well as variable hypothyroidism and goiter. In the kidney, pendrin is expressed in the distal nephron and accomplishes HCO3- secretion and Cl- reabsorption. Renal pendrin expression is regulated by acid-base balance. The liver contributes to acid-base regulation by producing or consuming glutamine, which is utilized by the kidney for generation and excretion of NH4+, paralleled by HCO3- formation. Little is known about the regulation of pendrin in liver. The present study thus examined the expression of Slc26a4 in liver and kidney of mice drinking tap water without or with NaHCO3 (150 mM), NH4Cl (280 mM) or acetazolamide (3.6 mM) for seven days. As compared to Gapdh transcript levels, Slc26a4 transcript levels were moderately lower in liver than in renal tissue. Slc26a4 transcript levels were not significantly affected by NaHCO3 in liver, but significantly increased by NaHCO3 in kidney. Pendrin protein expression was significantly enhanced in kidney and reduced in liver by NaHCO3. Slc26a4 transcript levels were significantly increased by NH4Cl and acetazolamide in liver, and significantly decreased by NH4Cl and by acetazolamide in kidney. NH4Cl and acetazolamide reduced pendrin protein expression significantly in kidney, but did not significantly modify pendrin protein expression in liver. The observations point to expression of pendrin in the liver and to opposite effects of acidosis on pendrin transcription in liver and kidney.
Kidney & Blood Pressure Research | 2014
Marco Bonani; Daniel Rodriguez; Thomas Fehr; Nilufar Mohebbi; Jens Brockmann; Markus Blum; Nicole Graf; Diana Frey; Rudolf P. Wüthrich
Background/Aims: Sclerostin is secreted by osteocytes. As a circulating inhibitor of the Wnt-signaling pathway it inhibits bone formation and contributes to the development of osteoporosis. Sclerostin levels are elevated in patients with chronic kidney disease and end-stage renal disease. Since data for patients after kidney transplantation are scarce, we have prospectively measured sclerostin levels before and during the first year after renal transplantation and have examined the association of sclerostin with parameters of bone mineral metabolism and with bone mineral density. Methods: Sclerostin levels were measured by ELISA in 42 consecutive renal transplant recipients before and at defined intervals in the first year after transplantation. Bone mineral density was measured by dual energy X-ray absorptiometry. Results: Pre-transplant serum sclerostin levels were elevated in all patients (61.8 ± 32.3 pmol/l, normal range 20-30 pmol/l). Within 15 days after transplantation and correlating with the improvement of renal function, sclerostin levels dropped to 21.0 ± 14.7 pmol/l and subsequently increased to 23.8 ± 14.9 and 28.0 ± 16.8 pmol/l after 6 and 12 months, respectively (P<0.001). A linear mixed model indicated that pre-transplant sclerostin levels (P<0.001) and time after transplantation (P<0.001) were the most important predictors for the rise of post-transplant sclerostin levels. No correlation was found between post-transplant sclerostin levels and bone mineral density. Conclusions: The rapid reduction of elevated serum sclerostin levels shortly after kidney transplantation parallels the improvement of renal function, but contrasts with the more delayed improvement of hyperparathyroidism. The normalization of both hormones could contribute to improved bone health after renal transplantation.
PLOS ONE | 2013
Nilufar Mohebbi; Angelica Perna; Jenny van der Wijst; Helen M. Becker; Giovambattista Capasso; Carsten A. Wagner
The renal handling of salt and protons and bicarbonate are intricately linked through shared transport mechanisms for sodium, chloride, protons, and bicarbonate. In the collecting duct, the regulated fine-tuning of salt and acid-base homeostasis is achieved by a series of transport proteins located in different cell types, intercalated and principal cells. Intercalated cells are considered to be of less importance for salt handling but recent evidence has suggested that the anion exchanger pendrin may participate in salt reabsorption and blood pressure regulation. Here, we examined the regulated expression of two functionally related but differentially expressed anion exchangers, AE1 and pendrin, by dietary electrolyte intake and aldosterone. Cortical expression of pendrin was regulated on mRNA and protein level. The combination of NaHCO3 and DOCA enhanced pendrin mRNA and protein levels, whereas DOCA or NaHCO3 alone had no effect. NaCl or KHCO3 increased pendrin mRNA, KCl decreased its mRNA abundance. On protein level, NH4Cl, NaCl, and KCl reduced pendrin expression, the other treatments were without effect. In contrast, AE1 mRNA or protein expression in kidney cortex was regulated by none of these treatments. In kidney medulla, NaHCO3/DOCA or NaHCO3 alone enhanced AE1 mRNA levels. AE1 protein abundance was increased by NH4Cl, NaHCO3/DOCA, and NaCl. Immunolocalization showed that during NH4Cl treatment the relative number of AE1 positive cells was increased and pendrin expressing cells reduced. Thus, pendrin and AE1 are differentially regulated with distinct mechanisms that separately affect mRNA and protein levels. Pendrin is regulated by acidosis and chloride intake, whereas AE1 is enhanced by acidosis, NaCl, and the combination of DOCA and NaHCO3.
Cellular Physiology and Biochemistry | 2011
Carsten A. Wagner; Nilufar Mohebbi; Ulrike Uhlig; Gerhard Giebisch; Sylvie Breton; Dennis Brown; John P. Geibel
Intercalated cells in the collecting duct system express V-type H+-ATPases which participate in acid extrusion, bicarbonate secretion, and chloride absorption depending on the specific subtype. The activity of H+-ATPases is regulated by acid-base status and several hormones, including angiotensin II and aldosterone. Angiotensin II stimulates chloride absorption mediated by pendrin in type B intercalated cells and this process is energized by the activity of H+-ATPases. Moreover, angiotensin II stimulates bicarbonate secretion by the connecting tubule (CNT) and early cortical collecting duct (CCD). In the present study we examined the effect of angiotensin II (10 nM) on H+-ATPase activity and localization in isolated mouse connecting tubules and cortical collecting ducts. Angiotensin II stimulated Na+-independent intracellular pH recovery about 2-3 fold, and this was abolished by the specific H+-ATPase inhibitor concanamycin. The effect of angiotensin II was mediated through type 1 angiotensin II receptors (AT1-receptors) because it could be blocked by saralasin. Stimulation of H+-ATPase activity required an intact microtubular network - it was completely inhibited by colchicine. Immunocytochemistry of isolated CNT/CCDs incubated in vitro with angiotensin II suggests enhanced membrane associated staining of H+-ATPases in pendrin expressing intercalated cells. In summary, angiotensin II stimulates H+-ATPases in CNT/CCD intercalated cells, and may contribute to the regulation of chloride absorption and bicarbonate secretion in this nephron segment.