Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nina Boiko is active.

Publication


Featured researches published by Nina Boiko.


Journal of Immunology | 2013

Selective Inhibition of KCa3.1 Channels Mediates Adenosine Regulation of the Motility of Human T Cells

Ameet A. Chimote; Peter Hajdu; Vladimir Kucher; Nina Boiko; Zerrin Kuras; Orsolya Szilagyi; Yeoheung Yun; Laura Conforti

Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine’s immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.


Journal of Biological Chemistry | 2013

Inhibition of Neuronal Degenerin/Epithelial Na+ Channels by the Multiple Sclerosis Drug 4-Aminopyridine

Nina Boiko; Volodymyr Kucher; Benjamin A. Eaton; James D. Stockand

Background: 4-AP treats the symptoms of MS because it inhibits Kv channels. Deg/ENaC channels contribute to the progression of MS. Results: 4-AP also inhibits Deg/ENaC channels. Conclusion: Effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Significance: 4-AP may influence the symptoms and progression of MS because of inhibitory actions on Kv and Deg/ENaC channels, respectively. The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.


Acta Physiologica | 2015

Regulation of Na+ excretion and arterial blood pressure by purinergic signalling intrinsic to the distal nephron: consequences and mechanisms.

Elena Mironova; Nina Boiko; Vladislav Bugaj; Volodymyr Kucher; James D. Stockand

Discretionary control of Na+ excretion is a key component of the regulation of arterial blood pressure in mammals. Sodium excretion is fine‐tuned in the aldosterone‐sensitive distal nephron by the activity of the epithelial Na+ channel (ENaC). Here, ENaC functions as a final effector of the renin–angiotensin–aldosterone system (RAAS) during negative feedback control of blood pressure. Mutations affecting ENaC activity and abnormal regulation of this channel affect blood pressure through pathological changes to Na+ excretion. Recent evidence demonstrates that powerful signalling pathways function in parallel with the RAAS to modulate ENaC activity and blood pressure. An inclusive paradigm is emerging with respect to regulation of blood pressure where ENaC serves as a critical point of convergence for several important signalling systems that affect renal Na+ excretion. A robust inhibitory purinergic signalling system intrinsic to the distal nephron dynamically regulates ENaC through paracrine ATP signalling via the metabotropic P2Y2 purinergic receptor to properly match urinary Na+ excretion to dietary Na+ intake. This enables blood pressure to be maintained within a normal range despite broad changes in dietary Na+ consumption. Loss of purinergic inhibition of ENaC increases blood pressure by causing inappropriate Na+ excretion. In contrast, stimulation of the P2Y2 receptor promotes natriuresis and a decrease in blood pressure. Such observations identify purinergic signalling in the distal nephron as possibly causative, when dysfunctional, for certain forms of elevated blood pressure, and as a possible therapeutic target for the treatment of elevated blood pressure particularly that associated with salt sensitivity.


PLOS ONE | 2014

Restrictive expression of acid-sensing ion channel 5 (asic5) in unipolar brush cells of the vestibulocerebellum.

Nina Boiko; Volodymyr Kucher; Bin Wang; James D. Stockand

Acid-sensing ion channels (Asic) are ligand-gated ion channels in the Degenerin/Epithelial Na+ channel (Deg/ENaC) family. Asic proteins are richly expressed in mammalian neurons. Mammals express five Asic genes: Asic1-5. The gene product of Asic5 is an orphan member of the family about which little is known. To investigate Asic5 expression, we created an Asic5 reporter mouse. We find that Asic5 is chiefly expressed in the brain in the cerebellum, specifically in the ventral uvula and nodulus of the vestibulocerebellum. Here, Asic5 is restrictively expressed in a subset of interneurons in the granular layer. The locale, distinctive shape and immunohistochemical properties of these Asic5-expressing interneurons identify them as unipolar brush cells (UBC). Asic5 is richly expressed in a subset of UBCs that also express the metabotropic glutamate receptor 1α (mGluR1α) but not those that express calretinin. Results from single cell RT-PCR and electrophysiological examination of these cells are consistent with this identity. Such observations are consistent with Asic5 playing a key role in the physiology of UBCs and in the function of the vestibulocerebellum.


Biophysical Journal | 2011

Voltage-Dependent Gating Underlies Loss of ENaC Function in Pseudohypoaldosteronism Type 1

Volodymyr Kucher; Nina Boiko; Oleh Pochynyuk; James D. Stockand

Here we explore the mechanism and associated structure-function implications of loss of function for epithelial Na(+) channel (ENaC) containing a pseudohypoaldosteronism type 1 (PHA-1)-causing missense point mutation. As expected, human ENaC that contained subunits harboring PHA-1-causing substitutions within an absolutely conserved, cytosolic Gly residue (e.g., βG37S) had significantly less activity. Unexpectedly, though, such substitution also results in voltage sensitivity with greater activity at hyperpolarizing potentials. This is a consequence of voltage-dependent changes in the single-channel open probability and is not species- or subunit-dependent. Voltage sensitivity in PHA-1 mutants stems from the disruption of critical structure, rather than the development of new properties resulting from the introduction of novel side chains. Residues near the conserved His-Gly sequence of G95 in α-mENaC are particularly important for voltage sensing. Although substitution of I93 in α-mENaC results in voltage sensing, it also slows the activation and deactivation kinetics enough to enable capture of the dynamic changes in single-channel open probability that account for changes in macroscopic activity. This provides definitive proof of the mechanism that underlies loss of function. In addition, the voltage dependence of ENaC with PHA-1 substitutions is akin to that which results from substitution of a critical, interfacial Trp residue conserved at the intracellular base of TM1 (e.g., W112 in α-mENaC). Dynamic interactions between similarly positioned His and Trp residues are essential for gating and the girdle-like structure that lines the intracellular mouth of the M2 proton channel. The similar residues in ENaC may serve a shared function, suggesting the possibility of an intracellular girdle just below the mouth of the ENaC pore.


Journal of Biological Chemistry | 2009

Intrinsic voltage-dependence of the epithelial Na+ channel is masked by a conserved transmembrane domain tryptophan

Oleh Pochynyuk; Volodymyr Kucher; Nina Boiko; Elena Mironova; Alexander Staruschenko; Alexey V. Karpushev; Qiusheng Tong; Eunan Hendron; James D. Stockand

Tryptophan residues critical to function are frequently located at the lipid-water interface of transmembrane domains. All members of the epithelial Na+ channel (ENaC)/Degenerin (Deg) channel superfamily contain an absolutely conserved Trp at the base of their first transmembrane domain. Here, we test the importance of this conserved Trp to ENaC/Deg function. Targeted substitution of this Trp in mouse ENaC and rat ASIC subunits decrease channel activity. Differential substitution with distinct amino acids in α-mENaC shows that it is loss of this critical Trp rather than introduction of residues having novel properties that changes channel activity. Surprisingly, Trp substitution unmasks voltage sensitivity. Mutant ENaC has increased steady-state activity at hyperpolarizing compared with depolarizing potentials associated with transient activation and deactivation times, respectively. The times of activation and deactivation change 1 ms/mV in a linear manner with rising and decreasing slopes, respectively. Increases in macroscopic currents at hyperpolarizing potentials results from a voltage-dependent increase in open probability. Voltage sensitivity is not influenced by divalent cations; however, it is Na+-dependent with a 63-mV decrease in voltage required to reach half-maximal activity per log increase in [Na+]. Mutant channels are particularly sensitive to intracellular [Na+] for removing this sodium abolishes voltage dependence. We conclude that the conserved Trp at the base of TM1 in ENaC/Deg channels protects against voltage by masking an inhibitory allosteric or pore block mechanism, which decreases activity in response to intracellular Na+.


Journal of Biological Chemistry | 2012

Pickpocket1 Is an Ionotropic Molecular Sensory Transducer

Nina Boiko; Volodymyr Kucher; James D. Stockand; Benjamin A. Eaton

Background: Ion channels are candidate molecules for transforming external stimuli into neural activity during sensory perception. Results: Pickpocket1 encodes an acid-sensing ion channel (ASIC) that is sufficient to drive neural activity in sensory neurons. Conclusion: The perception of external acid by Pickpocket1 channels is sufficient to produce phasic sensory neuron activity. Significance: ASIC channels can function as molecular sensory transducers in sensory neurons. The molecular transformation of an external stimulus into changes in sensory neuron activity is incompletely described. Although a number of molecules have been identified that can respond to stimuli, evidence that these molecules can transduce stimulation into useful neural activity is lacking. Here we demonstrate that pickpocket1 (ppk1), a Drosophila homolog of mammalian Degenerin/epithelial sodium channels, encodes an acid-sensing sodium channel that conducts a transient depolarizing current in multidendritic sensory neurons of Drosophila melanogaster. Stimulation of Ppk1 is sufficient to bring these sensory neurons to threshold, eliciting a burst of action potentials. The transient nature of the neural activity produced by Ppk1 activation is the result of Ppk1 channel gating properties. This model is supported by the observation of enhanced bursting activity in neurons expressing a gain of function ppk1 mutant harboring the degenerin mutation. These findings demonstrate that Ppk1 can function as an ionotropic molecular sensory transducer capable of transforming the perception of a stimulus into phasic neuronal activity in sensory neurons.


Nature Communications | 2015

Coordination and fine motor control depend on Drosophila TRPγ

Bradley Akitake; Qiuting Ren; Nina Boiko; Jinfei Ni; Takaaki Sokabe; James D. Stockand; Benjamin A. Eaton; Craig Montell

Motor coordination is broadly divided into gross and fine motor control, both of which depend on proprioceptive organs. However, the channels that function specifically in fine motor control are unknown. Here we show that mutations in trpγ disrupt fine motor control while leaving gross motor proficiency intact. The mutants are unable to coordinate precise leg movements during walking, and are ineffective in traversing large gaps due to an inability in making subtle postural adaptations that are requisite for this task. TRPγ is expressed in proprioceptive organs, and is required in both neurons and glia for gap crossing. We expressed TRPγ in vitro, and found that its activity is promoted by membrane stretch. A mutation eliminating the Na(+)/Ca(2+) exchanger suppresses the gap-crossing phenotype of trpγ flies. Our findings indicate that TRPγ contributes to fine motor control through mechanical activation in proprioceptive organs, thereby promoting Ca(2+) influx, which is required for function.Radio core dominance, the rest-frame ratio of core to lobe luminosity, has been widely used as a measure of Doppler boosting of a quasar’s radio jets and hence of the inclination of the central engine’s spin axis to the line of sight. However, the use of the radio lobe luminosity in the denominator (essentially to try and factor out the intrinsic power of the central engine) has been criticized and other proxies for the intrinsic engine power have been proposed. These include the optical continuum luminosity, and the luminosity of the narrow-line region. Each is plausible, but so far none has been shown to be clearly better than the others. In this paper we evaluate four different measures of core dominance using a new sample of 126 radio loud quasars, carefully selected to be as free as possible of orientation bias, together with high quality VLA images and optical spectra from the SDSS. We find that normalizing the radio core luminosity by the optical continuum luminosity yields a demonstrably superior orientation indicator. In addition, by comparing the equivalent widths of broad emission lines in our orientation-unbiased sample to those of sources in the MOJAVE program, we show that the beamed optical synchrotron emission from the jets is not a significant component of the optical continuum for the sources in our sample. We also discuss future applications of these results.


Physiological Reports | 2015

Pseudohypoaldosteronism type 1 and Liddle's syndrome mutations that affect the single-channel properties of the epithelial Na+ channel.

Nina Boiko; Volodymyr Kucher; James D. Stockand

These studies test whether three disease‐causing mutations in genes (SCNN1A and SCNN1G) encoding subunits of the epithelial Na+ channel, ENaC, affect the biophysical and gating properties of this important renal ion channel. The S562P missense mutation in αENaC and the K106_S108delinsN mutation in γENaC are associated with pseudohypoaldosteronism type 1 (PHA1). The N530S missense mutation in γENaC causes Liddles syndrome. Incorporation of S562P into αENaC and K106_S108N into γENaC resulted in significant decreases in macroscopic ENaC currents. Conversely, incorporation of N530S into γENaC increased macroscopic ENaC current. The S562P substitution resulted in a nonfunctional channel. The K106_S108N mutation produced a functional channel having a normal macroscopic current–voltage relation, there was a slight but significant decrease in unitary conductance and a marked decrease in single‐channel open probability. The N530S substitution increased single‐channel open probability having no effect on the macroscopic current–voltage relation or unitary conductance of the channel. These findings are consistent with mutation of residues at 562 in αENaC and 530 in γENaC, and a 3′ splice site in SCNN1G (318‐1 G→A; K106_108SdelinsN) resulting in aberrant ENaC activity due to changes in the biophysical and gating properties of the channel. Such changes likely contribute to the cellular mechanism underpinning the PHA1 and Liddles syndrome caused by these mutations in ENaC subunits.


PLOS ONE | 2017

TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids

Nina Boiko; Geraldo Medrano; Elizabeth Montano; Nan Jiang; Claire R. Williams; Ngonidzashe B. Madungwe; Jean C. Bopassa; Charles C. Kim; Jay Z. Parrish; Kenneth M. Hargreaves; James D. Stockand; Benjamin A. Eaton

Chemotherapy induced peripheral neuropathy (CIPN), a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1) channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN.

Collaboration


Dive into the Nina Boiko's collaboration.

Top Co-Authors

Avatar

James D. Stockand

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Volodymyr Kucher

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Eaton

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Elena Mironova

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Oleh Pochynyuk

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey V. Karpushev

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eunan Hendron

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Laura Conforti

North Carolina Agricultural and Technical State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge