Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ningguo Gao is active.

Publication


Featured researches published by Ningguo Gao.


Molecular Cancer Therapeutics | 2007

Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation

Metin Kurtoglu; Ningguo Gao; Jie Shang; Johnathan C. Maher; Mark A. Lehrman; Medhi Wangpaichitr; Niramol Savaraj; Andrew N. Lane; Theodore J. Lampidis

In tumor cells growing under hypoxia, inhibiting glycolysis with 2-deoxy-d-glucose (2-DG) leads to cell death, whereas under normoxic conditions cells similarly treated survive. Surprisingly, here we find that 2-DG is toxic in select tumor cell lines growing under normal oxygen tension. In contrast, a more potent glycolytic inhibitor, 2-fluorodeoxy-d-glucose, shows little or no toxicity in these cell types, indicating that a mechanism other than inhibition of glycolysis is responsible for their sensitivity to 2-DG under normoxia. A clue to this other mechanism comes from previous studies in which it was shown that 2-DG interferes with viral N-linked glycosylation and is reversible by exogenous addition of mannose. Similarly, we find that 2-DG interferes with N-linked glycosylation more potently in the tumor cell types that are sensitive to 2-DG under normoxia, which can be reversed by exogenous mannose. Additionally, 2-DG induces an unfolded protein response, including up-regulation of GADD153 (C/EBP-homologous protein), an unfolded protein response–specific mediator of apoptosis, more effectively in 2-DG–sensitive cells. We conclude that 2-DG seems to be toxic in select tumor cell types growing under normoxia by inhibition of N-linked glycosylation and not by glycolysis. Because in a phase I study 2-DG is used in combination with an anticancer agent to target hypoxic cells, our results raise the possibility that in certain cases, 2-DG could be used as a single agent to selectively kill both the aerobic (via interference with glycosylation) and hypoxic (via inhibition of glycolysis) cells of a solid tumor. [Mol Cancer Ther 2007;6(11):3049–58]


Cell | 2014

Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway

Zhao V. Wang; Yingfeng Deng; Ningguo Gao; Zully Pedrozo; Dan L. Li; Cyndi R. Morales; Alfredo Criollo; Xiang Luo; Wei Tan; Nan Jiang; Mark A. Lehrman; Beverly A. Rothermel; Ann Hwee Lee; Sergio Lavandero; Pradeep P.A. Mammen; Anwarul Ferdous; Thomas G. Gillette; Philipp E. Scherer; Joseph A. Hill

The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress.


Journal of Clinical Investigation | 2013

The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism

Yingfeng Deng; Zhao V. Wang; Caroline Tao; Ningguo Gao; William L. Holland; Anwarul Ferdous; Joyce J. Repa; Guosheng Liang; Jin Ye; Mark A. Lehrman; Joseph A. Hill; Jay D. Horton; Philipp E. Scherer

Postprandially, the liver experiences an extensive metabolic reprogramming that is required for the switch from glucose production to glucose assimilation. Upon refeeding, the unfolded protein response (UPR) is rapidly, though only transiently, activated. Activation of the UPR results in a cessation of protein translation, increased chaperone expression, and increased ER-mediated protein degradation, but it is not clear how the UPR is involved in the postprandial switch to alternate fuel sources. Activation of the inositol-requiring enzyme 1 (IRE1) branch of the UPR signaling pathway triggers expression of the transcription factor Xbp1s. Using a mouse model with liver-specific inducible Xbp1s expression, we demonstrate that Xbp1s is sufficient to provoke a metabolic switch characteristic of the postprandial state, even in the absence of caloric influx. Mechanistically, we identified UDP-galactose-4-epimerase (GalE) as a direct transcriptional target of Xbp1s and as the key mediator of this effect. Our results provide evidence that the Xbp1s/GalE pathway functions as a novel regulatory nexus connecting the UPR to the characteristic postprandial metabolic changes in hepatocytes.


PLOS ONE | 2010

Antiangiogenic activity of 2-deoxy-D-glucose

Jaime R. Merchan; Krisztina Kovacs; Jaclyn W. Railsback; Metin Kurtoglu; Yuqi Jing; Yolanda Piña; Ningguo Gao; Timothy G. Murray; Mark A. Lehrman; Theodore J. Lampidis

Background During tumor angiogenesis, endothelial cells (ECs) are engaged in a number of energy consuming biological processes, such as proliferation, migration, and capillary formation. Since glucose uptake and metabolism are increased to meet this energy need, the effects of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on in vitro and in vivo angiogenesis were investigated. Methodology/Principal Findings In cell culture, 2-DG inhibited EC growth, induced cytotoxicity, blocked migration, and inhibited actively forming but not established endothelial capillaries. Surprisingly, 2-DG was a better inhibitor of these EC properties than two more efficacious glycolytic inhibitors, 2-fluorodeoxy-D-glucose and oxamate. As an alternative to a glycolytic inhibitory mechanism, we considered 2-DGs ability to interfere with endothelial N-linked glycosylation. 2-DGs effects were reversed by mannose, an N-linked glycosylation precursor, and at relevant concentrations 2-DG also inhibited synthesis of the lipid linked oligosaccharide (LLO) N-glycosylation donor in a mannose-reversible manner. Inhibition of LLO synthesis activated the unfolded protein response (UPR), which resulted in induction of GADD153/CHOP and EC apoptosis (TUNEL assay). Thus, 2-DGs effects on ECs appeared primarily due to inhibition of LLOs synthesis, not glycolysis. 2-DG was then evaluated in two mouse models, inhibiting angiogenesis in both the matrigel plug assay and the LHBETATAG transgenic retinoblastoma model. Conclusions/Significance In conclusion, 2-DG inhibits endothelial cell angiogenesis in vitro and in vivo, at concentrations below those affecting tumor cells directly, most likely by interfering with N-linked glycosylation rather than glycolysis. Our data underscore the importance of glucose metabolism on neovascularization, and demonstrate a novel approach for anti-angiogenic strategies.


The EMBO Journal | 2011

Nogo‐B receptor is necessary for cellular dolichol biosynthesis and protein N‐glycosylation

Kenneth D. Harrison; Eon Joo Park; Ningguo Gao; Andrew Kuo; Jeffrey S. Rush; Charles J. Waechter; Mark A. Lehrman; William C. Sessa

Dolichol monophosphate (Dol‐P) functions as an obligate glycosyl carrier lipid in protein glycosylation reactions. Dol‐P is synthesized by the successive condensation of isopentenyl diphosphate (IPP), with farnesyl diphosphate catalysed by a cis‐isoprenyltransferase (cis‐IPTase) activity. Despite the recognition of cis‐IPTase activity 40 years ago and the molecular cloning of the human cDNA encoding the mammalian enzyme, the molecular machinery responsible for regulating this activity remains incompletely understood. Here, we identify Nogo‐B receptor (NgBR) as an essential component of the Dol‐P biosynthetic machinery. Loss of NgBR results in a robust deficit in cis‐IPTase activity and Dol‐P production, leading to diminished levels of dolichol‐linked oligosaccharides and a broad reduction in protein N‐glycosylation. NgBR interacts with the previously identified cis‐IPTase hCIT, enhances hCIT protein stability, and promotes Dol‐P production. Identification of NgBR as a component of the cis‐IPTase machinery yields insights into the regulation of dolichol biosynthesis.


Methods in Enzymology | 2006

Non-radioactive analysis of lipid-linked oligosaccharide compositions by fluorophore-assisted carbohydrate electrophoresis.

Ningguo Gao; Mark A. Lehrman

Lipid-linked oligosaccharides (LLOs) are the donors of glycans that modify newly synthesized proteins in the endoplasmic reticulum (ER) of eukaryotes, resulting in formation of N-linked glycoproteins. The vast majority of LLO analyses have relied on metabolic labeling with radioactive sugar precursors, but these approaches have technical limitations resulting in many important questions about LLO synthesis being left unanswered. Here we describe the application of a facile non-radioactive technique, fluorophore-assisted carbohydrate electrophoresis (FACE), which circumvents these limitations. With FACE, steady-state LLO compositions can be determined quantitatively from cell cultures and animal tissues. We also present FACE methods for analysis of phosphosugars and nucleotide sugars, which are metabolic precursors of LLOs.


Journal of Biological Chemistry | 2009

Suppression of Rft1 Expression Does Not Impair the Transbilayer Movement of Man5GlcNAc2-P-P-Dolichol in Sealed Microsomes from Yeast

Jeffrey S. Rush; Ningguo Gao; Mark A. Lehrman; Sergey Matveev; Charles J. Waechter

To further evaluate the role of Rft1 in the transbilayer movement of Man5GlcNAc2-P-P-dolichol (M5-DLO), a series of experiments was conducted with intact cells and sealed microsomal vesicles. First, an unexpectedly large accumulation (37-fold) of M5-DLO was observed in Rft1-depleted cells (YG1137) relative to Glc3Man9GlcNAc2-P-P-Dol in wild type (SS328) cells when glycolipid levels were compared by fluorophore-assisted carbohydrate electrophoresis analysis. When sealed microsomes from wild type cells and cells depleted of Rft1 were incubated with GDP-[3H]mannose or UDP-[3H]GlcNAc in the presence of unlabeled GDP-Man, no difference was observed in the rate of synthesis of [3H]Man9GlcNAc2-P-P-dolichol or Man9[3H]GlcNAc2-P-P-dolichol, respectively. In addition, no difference was seen in the level of M5-DLO flippase activity in sealed wild type and Rft1-depleted microsomal vesicles when the activity was assessed by the transport of GlcNAc2-P-P-Dol15, a water-soluble analogue. The entry of the analogue into the lumenal compartment was confirmed by demonstrating that [3H]chitobiosyl units were transferred to endogenous peptide acceptors via the yeast oligosaccharyltransferase when sealed vesicles were incubated with [3H]GlcNAc2-P-P-Dol15 in the presence of an exogenously supplied acceptor peptide. In addition, several enzymes involved in Dol-P and lipid intermediate biosynthesis were found to be up-regulated in Rft1-depleted cells. All of these results indicate that although Rft1 may play a critical role in vivo, depletion of this protein does not impair the transbilayer movement of M5-DLO in sealed microsomal fractions prepared from disrupted cells.


Journal of Cell Biology | 2007

Translation attenuation by PERK balances ER glycoprotein synthesis with lipid-linked oligosaccharide flux

Jie Shang; Ningguo Gao; Randal J. Kaufman; David Ron; Heather P. Harding; Mark A. Lehrman

Endoplasmic reticulum (ER) homeostasis requires transfer and subsequent processing of the glycan Glc3Man9GlcNAc2 (G3M9Gn2) from the lipid-linked oligosaccharide (LLO) glucose3mannose9N-acetylglucosamine2-P-P-dolichol (G3M9Gn2-P-P-Dol) to asparaginyl residues of nascent glycoprotein precursor polypeptides. However, it is unclear how the ER is protected against dysfunction from abnormal accumulation of LLO intermediates and aberrant N-glycosylation, as occurs in certain metabolic diseases. In metazoans phosphorylation of eukaryotic initiation factor 2α (eIF2α) on Ser51 by PERK (PKR-like ER kinase), which is activated by ER stress, attenuates translation initiation. We use brief glucose deprivation to simulate LLO biosynthesis disorders, and show that attenuation of polypeptide synthesis by PERK promotes extension of LLO intermediates to G3M9Gn2-P-P-Dol under these substrate-limiting conditions, as well as counteract abnormal N-glycosylation. This simple mechanism requires eIF2α Ser51 phosphorylation by PERK, and is mimicked by agents that stimulate cytoplasmic stress-responsive Ser51 kinase activity. Thus, by sensing ER stress from defective glycosylation, PERK can restore ER homeostasis by balancing polypeptide synthesis with flux through the LLO pathway.


Molecular Biology of the Cell | 2012

A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency

Abigail Cline; Ningguo Gao; Heather Flanagan-Steet; Vandana Sharma; Sabrina Rosa; Roberto Sonon; Parastoo Azadi; Kirsten C. Sadler; Hudson H. Freeze; Mark A. Lehrman; Richard Steet

PMM2-CDG patients have phosphomannomutase (Pmm2) deficiency, with developmental and N-linked glycosylation defects attributed to depletion of mannose-1-phosphate and downstream lipid-linked oligosaccharides (LLOs). This, the first PMM2-CDG zebrafish model, shows, unexpectedly, that accumulation of the Pmm2 substrate mannose-6-phosphate explains LLO deficiency.


Journal of Biological Chemistry | 2008

Recycling of Dolichyl Monophosphate to the Cytoplasmic Leaflet of the Endoplasmic Reticulum after the Cleavage of Dolichyl Pyrophosphate on the Lumenal Monolayer

Jeffrey S. Rush; Ningguo Gao; Mark A. Lehrman; Charles J. Waechter

During protein N-glycosylation, dolichyl pyrophosphate (Dol-P-P) is discharged in the lumenal monolayer of the endoplasmic reticulum (ER). Dol-P-P is then cleaved to Dol-P by Dol-P-P phosphatase (DPPase). Studies with the yeast mutant cwh8Δ, lacking DPPase activity, indicate that recycling of Dol-P produced by DPPase contributes significantly to the pool of Dol-P utilized for lipid intermediate biosynthesis on the cytoplasmic leaflet. Whether Dol-P formed in the lumen diffuses directly back to the cytoplasmic leaflet or is first dephosphorylated to dolichol has not been determined. Incubation of sealed ER vesicles from calf brain with acetyl-Asn-Tyr-Thr-NH2, an N-glycosylatable peptide, to generate Dol-P-P in the lumenal monolayer produced corresponding increases in the rates of Man-P-Dol, Glc-P-Dol, and GlcNAc-P-P-Dol synthesis in the absence of CTP. No changes in dolichol kinase activity were observed. When streptolysin-O permeabilized CHO cells were incubated with an acceptor peptide, N-glycopeptide synthesis, requiring multiple cycles of the dolichol pathway, occurred in the absence of CTP. The results obtained with sealed microsomes and CHO cells indicate that Dol-P, formed from Dol-P-P, returns to the cytoplasmic leaflet where it can be reutilized for lipid intermediate biosynthesis, and dolichol kinase is not required for recycling. It is possible that the flip-flopping of the carrier lipid is mediated by a flippase, which would provide a mechanism for the recycling of Dol-P derived from Man-P-Dol-mediated reactions in N-, O-, and C-mannosylation of proteins, GPI anchor assembly, and the three Glc-P-Dol-mediated reactions in Glc3Man9GlcNAc2-P-P-Dol (DLO) biosynthesis.

Collaboration


Dive into the Ningguo Gao's collaboration.

Top Co-Authors

Avatar

Mark A. Lehrman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jie Shang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anwarul Ferdous

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Hill

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Philipp E. Scherer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingfeng Deng

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhao V. Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Beverly A. Rothermel

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge