Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niraj H. Tolia is active.

Publication


Featured researches published by Niraj H. Tolia.


Nature Structural & Molecular Biology | 2005

Purified Argonaute2 and an siRNA form recombinant human RISC.

Fabiola Rivas; Niraj H. Tolia; Ji-Joon Song; Juan P Aragon; Jidong Liu; Gregory J. Hannon; Leemor Joshua-Tor

Genetic, biochemical and structural studies have implicated Argonaute proteins as the catalytic core of the RNAi effector complex, RISC. Here we show that recombinant, human Argonaute2 can combine with a small interfering RNA (siRNA) to form minimal RISC that accurately cleaves substrate RNAs. Recombinant RISC shows many of the properties of RISC purified from human or Drosophila melanogaster cells but also has surprising features. It shows no stimulation by ATP, suggesting that factors promoting product release are missing from the recombinant enzyme. The active site is made up of a unique Asp-Asp-His (DDH) motif. In the RISC reconstitution system, the siRNA 5′ phosphate is important for the stability and the fidelity of the complex but is not essential for the creation of an active enzyme. These studies demonstrate that Argonaute proteins catalyze mRNA cleavage within RISC and provide a source of recombinant enzyme for detailed biochemical studies of the RNAi effector complex.


Nature Structural & Molecular Biology | 2003

The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes.

Ji-Joon Song; Jidong Liu; Niraj H. Tolia; Jonathan Schneiderman; Stephanie K. Smith; Robert A. Martienssen; Gregory J. Hannon; Leemor Joshua-Tor

RISC, the RNA-induced silencing complex, uses short interfering RNAs (siRNAs) or micro RNAs (miRNAs) to select its targets in a sequence-dependent manner. Key RISC components are Argonaute proteins, which contain two characteristic domains, PAZ and PIWI. PAZ is highly conserved and is found only in Argonaute proteins and Dicer. We have solved the crystal structure of the PAZ domain of Drosophila Argonaute2. The PAZ domain contains a variant of the OB fold, a module that often binds single-stranded nucleic acids. PAZ domains show low-affinity nucleic acid binding, probably interacting with the 3′ ends of single-stranded regions of RNA. PAZ can bind the characteristic two-base 3′ overhangs of siRNAs, indicating that although PAZ may not be a primary nucleic acid binding site in Dicer or RISC, it may contribute to the specific and productive incorporation of siRNAs and miRNAs into the RNAi pathway.


Cell | 2006

Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi

Erbay Yigit; Pedro J. Batista; Yanxia Bei; Ka Ming Pang; Chun-Chieh G. Chen; Niraj H. Tolia; Leemor Joshua-Tor; Shohei Mitani; Martin J. Simard; Craig C. Mello

Argonaute (AGO) proteins interact with small RNAs to mediate gene silencing. C. elegans contains 27 AGO genes, raising the question of what roles these genes play in RNAi and related gene-silencing pathways. Here we describe 31 deletion alleles representing all of the previously uncharacterized AGO genes. Analysis of single- and multiple-AGO mutant strains reveals functions in several pathways, including (1) chromosome segregation, (2) fertility, and (3) at least two separate steps in the RNAi pathway. We show that RDE-1 interacts with trigger-derived sense and antisense RNAs to initiate RNAi, while several other AGO proteins interact with amplified siRNAs to mediate downstream silencing. Overexpression of downstream AGOs enhances silencing, suggesting that these proteins are limiting for RNAi. Interestingly, these AGO proteins lack key residues required for mRNA cleavage. Our findings support a two-step model for RNAi, in which functionally and structurally distinct AGOs act sequentially to direct gene silencing.


Cell | 2005

Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum

Niraj H. Tolia; Eric J. Enemark; B. Kim Lee Sim; Leemor Joshua-Tor

Erythrocyte binding antigen 175 (EBA-175) is a P. falciparum protein that binds the major glycoprotein found on human erythrocytes, glycophorin A, during invasion. Here we present the crystal structure of the erythrocyte binding domain of EBA-175, RII, which has been established as a vaccine candidate. Binding sites for the heavily sialylated receptor glycophorin A are proposed based on a complex of RII with a glycan that contains the essential components required for binding. The dimeric organization of RII displays two prominent channels that contain four of the six observed glycan binding sites. Each monomer consists of two Duffy binding-like (DBL) domains (F1 and F2). F2 more prominently lines the channels and makes the majority of the glycan contacts, underscoring its role in cytoadherence and in antigenic variation in malaria. Our studies provide insight into the mechanism of erythrocyte invasion by the malaria parasite and aid in rational drug design and vaccines.


Science | 2006

Argonaute Slicing Is Required for Heterochromatic Silencing and Spreading

Danielle V. Irvine; Mikel Zaratiegui; Niraj H. Tolia; Derek B. Goto; Daniel H. Chitwood; Matthew W. Vaughn; Leemor Joshua-Tor; Robert A. Martienssen

Small interfering RNA (siRNA) guides dimethylation of histone H3 lysine-9 (H3K9me2) via the Argonaute and RNA-dependent RNA polymerase complexes, as well as base-pairing with either RNA or DNA. We show that Argonaute requires the conserved aspartate-aspartate-histidine motif for heterochromatic silencing and for ribonuclease H–like cleavage (slicing) of target messages complementary to siRNA. In the fission yeast Schizosaccharomyces pombe, heterochromatic repeats are transcribed by polymerase II. We show that H3K9me2 spreads into silent reporter genes when they are embedded within these transcripts and that spreading requires read-through transcription, as well as slicing by Argonaute. Thus, siRNA guides histone modification by basepairing interactions with RNA.


Nature Methods | 2006

Strategies for protein coexpression in Escherichia coli

Niraj H. Tolia; Leemor Joshua-Tor

E. coli is a convenient host for heterologous protein expression. Its advantages include high levels of heterologous gene expression and scalability of experiments, low cost, fast growth, a lack of posttranslational modification and an ability to express labeled (isotope or seleno-methionine) proteins. However, heterologous gene expression in E. coli can lead to the production of insoluble and/or nonfunctional target proteins. This is often due to the absence of cofactors or post-translational modifications required for function, stability or folding. Coexpression of multiple genes in E. coli, such as the members of a stable multiprotein complex1 or a protein with a chaperone2,3, can in many cases alleviate these problems. Coexpression involves the transformation of E. coli with several plasmids that have compatible origins of replication and independent antibiotic selection for maintenance. The Duet (Novagen) vectors have two multiple cloning sites per vector, five compatible origins of replication and four antibiotic selection markers, allowing the simultaneous expression of up to eight proteins. The combination of Duet vectors with other commercial plasmids allows the use of affinity tags, such as glutathione S-transferase (GST) or maltose binding protein (MBP), which can ease the recovery and improve the solubility of the desired target. Coexpression in E. coli therefore provides a useful alternative to the complicated and expensive expression systems, such as yeast, baculovirus or mammalian cell culture, which are commonly used to overcome problems of heterologous protein expression. A summary of the method is presented in Figure 1.


Nature Structural & Molecular Biology | 2011

Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC

Joseph D. Batchelor; Jacob A. Zahm; Niraj H. Tolia

Plasmodium vivax and Plasmodium knowlesi invasion depends on the parasite Duffy-binding protein DBL domain (RII-PvDBP or RII-PkDBP) engaging the Duffy antigen receptor for chemokines (DARC) on red blood cells. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, a question whose resolution has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP showing that dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally acquired blocking antibodies and the mechanism of immune evasion. We show that dimerization is conserved in DBL-domain receptor engagement and propose that receptor-mediated ligand dimerization drives receptor affinity and specificity. Because dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization may activate pathways for invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Allosteric activation of ADAMTS13 by von Willebrand factor

Joshua Muia; Jian Zhu; Garima Gupta; Sandra L. Haberichter; Kenneth D. Friedman; Hendrik B. Feys; Louis Deforche; Karen Vanhoorelbeke; Lisa A. Westfield; Robyn Roth; Niraj H. Tolia; John E. Heuser; J. Evan Sadler

Significance The blood protein von Willebrand factor (VWF) is required for platelets to stop bleeding at sites of injury, and the metalloprotease ADAMTS13 limits platelet adhesion by cleaving VWF only when flowing blood stretches it, especially within a growing thrombus. This feedback inhibition is essential because ADAMTS13 deficiency causes fatal microvascular thrombosis. How ADAMTS13 recognizes VWF so specifically is not understood. We now find that ADAMTS13 is folded roughly in half so that its distal domains inhibit the metalloprotease domain. VWF relieves this autoinhibition and promotes its own destruction by allosterically activating ADAMTS13. Thus, VWF is both a substrate and a cofactor in this critical regulatory process. The metalloprotease ADAMTS13 cleaves von Willebrand factor (VWF) within endovascular platelet aggregates, and ADAMTS13 deficiency causes fatal microvascular thrombosis. The proximal metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains of ADAMTS13 recognize a cryptic site in VWF that is exposed by tensile force. Another seven T and two complement C1r/C1s, sea urchin epidermal growth factor, and bone morphogenetic protein (CUB) domains of uncertain function are C-terminal to the MDTCS domains. We find that the distal T8-CUB2 domains markedly inhibit substrate cleavage, and binding of VWF or monoclonal antibodies to distal ADAMTS13 domains relieves this autoinhibition. Small angle X-ray scattering data indicate that distal T-CUB domains interact with proximal MDTCS domains. Thus, ADAMTS13 is regulated by substrate-induced allosteric activation, which may optimize VWF cleavage under fluid shear stress in vivo. Distal domains of other ADAMTS proteases may have similar allosteric properties.


Nature Communications | 2016

Data publication with the structural biology data grid supports live analysis

Peter Meyer; Stephanie Socias; Jason Key; Elizabeth Ransey; Emily C. Tjon; Alejandro Buschiazzo; Ming Lei; Chris Botka; James Withrow; David Neau; Kanagalaghatta R. Rajashankar; Karen S. Anderson; Richard H. G. Baxter; Stephen C. Blacklow; Titus J. Boggon; Alexandre M. J. J. Bonvin; Dominika M. Borek; Tom J. Brett; Amedeo Caflisch; Chung I. Chang; Walter J. Chazin; Kevin D. Corbett; Michael S. Cosgrove; Sean Crosson; Sirano Dhe-Paganon; Enrico Di Cera; Catherine L. Drennan; Michael J. Eck; Brandt F. Eichman; Qing R. Fan

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.


PLOS Pathogens | 2014

Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC.

Joseph D. Batchelor; Brian M. Malpede; Natalie S. Omattage; Gregory T. DeKoster; Katherine A. Henzler-Wildman; Niraj H. Tolia

Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.

Collaboration


Dive into the Niraj H. Tolia's collaboration.

Top Co-Authors

Avatar

Nichole D. Salinas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Leemor Joshua-Tor

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Brian M. Malpede

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John R. Jimah

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joo-Young Park

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Batchelor

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Edwin Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

J. Evan Sadler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jian Zhu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua Muia

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge