Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nichole D. Salinas is active.

Publication


Featured researches published by Nichole D. Salinas.


PLOS Pathogens | 2013

Structural and Functional Basis for Inhibition of Erythrocyte Invasion by Antibodies that Target Plasmodium falciparum EBA-175.

Edwin Chen; May M. Paing; Nichole D. Salinas; B. Kim Lee Sim; Niraj H. Tolia

Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175) engages the host receptor Glycophorin A (GpA) during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

Edwin Chen; Nichole D. Salinas; Yining Huang; Francis B. Ntumngia; Manolo D. Plasencia; Michael L. Gross; John H. Adams; Niraj H. Tolia

Significance Plasmodium vivax is a causative agent of malaria that results in high morbidity and mortality. P. vivax Duffy Binding Protein (PvDBP) is a leading vaccine candidate for P. vivax; however, PvDBP is highly variable, which prevents a strain transcending immune response, complicating vaccine design. Here we report the first, to our knowledge, broadly neutralizing antibody epitopes within PvDBP, and expand the known repertoire of neutralizing epitopes for this protein. The identification of broadly conserved inhibitory epitopes provides critical new motifs that should be retained in the next generation of P. vivax malaria vaccines and serve as a basis for rational structure-based vaccine design. Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifs in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. The identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.


Mbio | 2014

Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity

Nichole D. Salinas; May M. Paing; Niraj H. Tolia

ABSTRACT Erythrocyte invasion is an essential step in the pathogenesis of malaria. The erythrocyte binding-like (EBL) family of Plasmodium falciparum proteins recognizes glycophorins (Gp) on erythrocytes and plays a critical role in attachment during invasion. However, the molecular basis for specific receptor recognition by each parasite ligand has remained elusive, as is the case with the ligand/receptor pair P. falciparum EBA-175 (PfEBA-175)/GpA. This is due largely to difficulties in producing properly glycosylated and functional receptors. Here, we developed an expression system to produce recombinant glycosylated and functional GpA, as well as mutations and truncations. We identified the essential binding region and determinants for PfEBA-175 engagement, demonstrated that these determinants are required for the inhibition of parasite growth, and identified the glycans important in mediating the PfEBA-175–GpA interaction. The results suggest that PfEBA-175 engages multiple glycans of GpA encoded by exon 3 and that the presentation of glycans is likely required for high-avidity binding. The absence of exon 3 in GpB and GpE due to a splice site mutation confers specific recognition of GpA by PfEBA-175. We speculate that GpB and GpE may have arisen due to selective pressure to lose the PfEBA-175 binding site in GpA. The expression system described here has wider application for examining other EBL members important in parasite invasion, as well as additional pathogens that recognize glycophorins. The ability to define critical binding determinants in receptor-ligand interactions, as well as a system to genetically manipulate glycosylated receptors, opens new avenues for the design of interventions that disrupt parasite invasion. IMPORTANCE Plasmodium falciparum uses distinct ligands that bind host cell receptors for invasion of red blood cells (RBCs) during malaria infection. A key entry pathway involves P. falciparum EBA-175 (PfEBA-175) recognizing glycophorin A (GpA) on RBCs. Despite knowledge of this protein-protein interaction, the complete mechanism for specific receptor engagement is not known. PfEBA-175 recognizes GpA but is unable to engage the related RBC receptor GpB or GpE. Understanding the necessary elements that enable PfEBA-175 to specifically recognize GpA is critical in developing specific and potent inhibitors of PfEBA-175 that disrupt host cell invasion and aid in malaria control. Here, we describe a novel system to produce and manipulate the host receptor GpA. Using this system, we probed the elements in GpA necessary for engagement and thus for host cell invasion. These studies have important implications for understanding how ligands and receptors interact and for the future development of malaria interventions. Plasmodium falciparum uses distinct ligands that bind host cell receptors for invasion of red blood cells (RBCs) during malaria infection. A key entry pathway involves P. falciparum EBA-175 (PfEBA-175) recognizing glycophorin A (GpA) on RBCs. Despite knowledge of this protein-protein interaction, the complete mechanism for specific receptor engagement is not known. PfEBA-175 recognizes GpA but is unable to engage the related RBC receptor GpB or GpE. Understanding the necessary elements that enable PfEBA-175 to specifically recognize GpA is critical in developing specific and potent inhibitors of PfEBA-175 that disrupt host cell invasion and aid in malaria control. Here, we describe a novel system to produce and manipulate the host receptor GpA. Using this system, we probed the elements in GpA necessary for engagement and thus for host cell invasion. These studies have important implications for understanding how ligands and receptors interact and for the future development of malaria interventions.


Eukaryotic Cell | 2014

Cryptococcus neoformans Dual GDP-Mannose Transporters and Their Role in Biology and Virulence

Zhuo A. Wang; Cara L. Griffith; Michael L. Skowyra; Nichole D. Salinas; Matthew Williams; Ezekiel Maier; Stacey R. Gish; Hong Liu; Michael R. Brent; Tamara L. Doering

ABSTRACT Cryptococcus neoformans is an opportunistic yeast responsible for lethal meningoencephalitis in humans. This pathogen elaborates a polysaccharide capsule, which is its major virulence factor. Mannose constitutes over one-half of the capsule mass and is also extensively utilized in cell wall synthesis and in glycosylation of proteins and lipids. The activated mannose donor for most biosynthetic reactions, GDP-mannose, is made in the cytosol, although it is primarily consumed in secretory organelles. This compartmentalization necessitates specific transmembrane transporters to make the donor available for glycan synthesis. We previously identified two cryptococcal GDP-mannose transporters, Gmt1 and Gmt2. Biochemical studies of each protein expressed in Saccharomyces cerevisiae showed that both are functional, with similar kinetics and substrate specificities in vitro. We have now examined these proteins in vivo and demonstrate that cells lacking Gmt1 show significant phenotypic differences from those lacking Gmt2 in terms of growth, colony morphology, protein glycosylation, and capsule phenotypes. Some of these observations may be explained by differential expression of the two genes, but others suggest that the two proteins play overlapping but nonidentical roles in cryptococcal biology. Furthermore, gmt1 gmt2 double mutant cells, which are unexpectedly viable, exhibit severe defects in capsule synthesis and protein glycosylation and are avirulent in mouse models of cryptococcosis.


Protein Expression and Purification | 2014

A quantitative assay for binding and inhibition of Plasmodium falciparum Erythrocyte Binding Antigen 175 reveals high affinity binding depends on both DBL domains

Nichole D. Salinas; Niraj H. Tolia

Plasmodium falciparum Erythrocyte Binding Antigen 175 (PfEBA-175) engages Glycophorin A (GpA) on erythrocytes during malaria infection. The two Duffy binding like domains (F1 and F2) of PfEBA-175 that form region II (RII) are necessary for binding GpA, and are the target of neutralizing antibodies. Recombinant production of RII in Pichia pastoris and baculovirus has required mutations to prevent aberrant glycosylation or deglycosylation resulting in modifications to the protein surface that may affect antibody recognition and binding. In this study, we developed a recombinant system in Escherichia coli to obtain RII and F2 without mutations or glycosylation through oxidative refolding. The system produced refolded protein with high yields and purity, and without the need for mutations or deglycosylation. Biophysical characterization indicated both proteins are well behaved and correctly folded. We also demonstrate the recombinant proteins are functional, and develop a quantitative functional flow cytometry binding assay for erythrocyte binding ideally suited to measure inhibition by antibodies and inhibitors. This assay showed far greater binding of RII to erythrocytes over F2 and that binding of RII is inhibited by a neutralizing antibody and sialyllactose, while galactose had no effect on binding. These studies form the framework to measure inhibition by antibodies and small molecules that target PfEBA-175 in a rapid and quantitative manner using RII that is unmodified or mutated. This approach has significant advantages over current methods for examining receptor-ligand interactions and is applicable to other erythrocyte binding proteins used by the parasite.


eLife | 2016

Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption

John R. Jimah; Nichole D. Salinas; Monica Sala-Rabanal; Nathaniel G. Jones; L. David Sibley; Colin G. Nichols; Paul H. Schlesinger; Niraj H. Tolia

Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens. DOI: http://dx.doi.org/10.7554/eLife.20621.001


PLOS Neglected Tropical Diseases | 2015

Structural Analysis of the Synthetic Duffy Binding Protein (DBP) Antigen DEKnull Relevant for Plasmodium vivax Malaria Vaccine Design

Edwin Chen; Nichole D. Salinas; Francis B. Ntumngia; John H. Adams; Niraj H. Tolia

The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We determined the x-ray crystal structure of DEKnull to identify if any conformational changes had occurred upon mutation. Computational and experimental analyses assessed immunogenicity differences between DBP and DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to interrogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally similar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor binding pockets, two important structurally conserved protective epitope motifs. All B-cell epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The DEKnull protein retains binding to conformationally dependent inhibitory antibodies. DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced immunogenicity to polymorphic regions responsible for strain-specific immunity while retaining conserved protein folds necessary for induction of strain-transcending blocking inhibitory antibodies.


Clinical and Vaccine Immunology | 2013

Inhibitory Humoral Responses to the Plasmodium falciparum Vaccine Candidate EBA-175 Are Independent of the Erythrocyte Invasion Pathway

A.S. Badiane; Amy K. Bei; Ambroise D. Ahouidi; Saurabh D. Patel; Nichole D. Salinas; Daouda Ndiaye; Ousmane Sarr; Omar Ndir; Niraj H. Tolia; Souleymane Mboup; Manoj T. Duraisingh

ABSTRACT Plasmodium falciparum utilizes multiple ligand-receptor interactions for invasion. The invasion ligand EBA-175 is being developed as a major blood-stage vaccine candidate. EBA-175 mediates parasite invasion of host erythrocytes in a sialic acid-dependent manner through its binding to the erythrocyte receptor glycophorin A. In this study, we addressed the ability of naturally acquired human antibodies against the EBA-175 RII erythrocyte-binding domain to inhibit parasite invasion of ex vivo isolates, in relationship to the sialic acid dependence of these parasites. We have determined the presence of antibodies to the EBA-175 RII domain by enzyme-linked immunosorbent assay (ELISA) in individuals from areas of Senegal where malaria is endemic with high and low transmission. Using affinity-purified human antibodies to the EBA-175 RII domain from pooled patient plasma, we have measured the invasion pathway as well as the invasion inhibition of clinical isolates from Senegalese patients in ex vivo assays. Our results suggest that naturally acquired anti-EBA-175 RII antibodies significantly inhibit invasion of Senegalese parasites and that these responses can be significantly enhanced through limiting other ligand-receptor interactions. However, the extent of this functional inhibition by EBA-175 antibodies is not associated with the sialic acid dependence of the parasite strain, suggesting that erythrocyte invasion pathway usage by parasite strains is not driven by antibodies targeting the EBA-175/glycophorin A interaction. This work has implications for vaccine design based on the RII domain of EBA-175 in the context of alternative invasion pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion

Marion Koch; Katherine E. Wright; Oliver Otto; Maik Herbig; Nichole D. Salinas; Niraj H. Tolia; Timothy J. Satchwell; Jochen Guck; Nicholas J. Brooks; Jake Baum

Significance The blood-stage malaria parasite, the merozoite, invades the human red blood cell (RBC) using receptor–ligand interactions between the parasite and host cell surface, yet the function of these interactions to invasion is not known. We have analyzed the binding between one key merozoite invasion ligand, called erythrocyte-binding antigen 175 (EBA175), and glycophorin A on the RBC surface (the most dominant surface antigen) and explored how this interaction affects the biophysical properties of the red cell. Using a combination of imaging techniques, we demonstrate that the malaria parasite changes the biophysical nature of the red cell, facilitating its own entry by effectively reducing the energy barrier to invasion. This study demonstrates a red cell biophysical contribution to merozoite entry. Invasion of the red blood cell (RBC) by the Plasmodium parasite defines the start of malaria disease pathogenesis. To date, experimental investigations into invasion have focused predominantly on the role of parasite adhesins or signaling pathways and the identity of binding receptors on the red cell surface. A potential role for signaling pathways within the erythrocyte, which might alter red cell biophysical properties to facilitate invasion, has largely been ignored. The parasite erythrocyte-binding antigen 175 (EBA175), a protein required for entry in most parasite strains, plays a key role by binding to glycophorin A (GPA) on the red cell surface, although the function of this binding interaction is unknown. Here, using real-time deformability cytometry and flicker spectroscopy to define biophysical properties of the erythrocyte, we show that EBA175 binding to GPA leads to an increase in the cytoskeletal tension of the red cell and a reduction in the bending modulus of the cell’s membrane. We isolate the changes in the cytoskeleton and membrane and show that reduction in the bending modulus is directly correlated with parasite invasion efficiency. These data strongly imply that the malaria parasite primes the erythrocyte surface through its binding antigens, altering the biophysical nature of the target cell and thus reducing a critical energy barrier to invasion. This finding would constitute a major change in our concept of malaria parasite invasion, suggesting it is, in fact, a balance between parasite and host cell physical forces working together to facilitate entry.


eLife | 2017

Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

Xavier Sisquella; Thomas Nebl; Jennifer K. Thompson; Lachlan Whitehead; Brian M. Malpede; Nichole D. Salinas; Kelly L. Rogers; Niraj H. Tolia; Andrea Fleig; Joseph O’Neill; Wai-Hong Tham; F. David Horgen; Alan F. Cowman

The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion. DOI: http://dx.doi.org/10.7554/eLife.21083.001

Collaboration


Dive into the Nichole D. Salinas's collaboration.

Top Co-Authors

Avatar

Niraj H. Tolia

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Edwin Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Adams

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

May M. Paing

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michael L. Gross

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yining Huang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Fleig

The Queen's Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian M. Malpede

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge