Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nirav Daphtary is active.

Publication


Featured researches published by Nirav Daphtary.


Journal of Immunology | 2013

Epithelial NF-κB Orchestrates House Dust Mite–Induced Airway Inflammation, Hyperresponsiveness, and Fibrotic Remodeling

Jane E. Tully; Sidra M. Hoffman; Karolyn G. Lahue; James D. Nolin; Vikas Anathy; Lennart K. A. Lundblad; Nirav Daphtary; Minara Aliyeva; Kendall E. Black; Anne E. Dixon; Matthew E. Poynter; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

NF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM. After a single exposure of HDM, mRNA expression of proinflammatory mediators was significantly elevated in lung tissue of wild-type (WT) mice, in association with increases in nuclear RelA and RelB, components of the classical and alternative NF-κB pathway, respectively, in the bronchiolar epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA and RelB and mRNA expression of proinflammatory mediators compared with WT mice. After 15 challenges with HDM, WT mice exhibited increases in inflammation, AHR, mucus metaplasia, and peribronchiolar fibrosis. CC10-IκBαSR transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, and elastance parameters, in association will less peribronchiolar fibrosis and decreases in nuclear RelB in lung tissue. However, central airway resistance and mucus metaplasia remained elevated in CC10-IκBαSR transgenic mice, in association with the continued presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current study demonstrates that following airway exposure with an asthma-relevant allergen, activation of classical and alternative NF-κB pathways occurs within the airway epithelium and may coordinately contribute to allergic inflammation, AHR, and fibrotic airway remodeling.


Respiratory Research | 2013

Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis

Sidra M. Hoffman; Jane E. Tully; James D. Nolin; Karolyn G. Lahue; Dylan Goldman; Nirav Daphtary; Minara Aliyeva; Charles G. Irvin; Anne E. Dixon; Matthew E. Poynter; Vikas Anathy

BackgroundThe endoplasmic reticulum (ER) stress response participates in many chronic inflammatory and autoimmune diseases. In the current study, we sought to examine the contribution of ER stress transducers in the pathogenesis of three principal facets of allergic asthma: inflammation, airway fibrosis, and airways hyperresponsiveness.MethodsHouse Dust Mite (HDM) was used as an allergen for in vitro and in vivo challenge of primary human and murine airway epithelial cells. ER stress transducers were modulated using specific small interfering RNAs (siRNAs) in vivo. Inflammation, airway remodeling, and hyperresponsiveness were measured by total bronchoalveolar lavage (BAL) cell counts, determination of collagen, and methacholine responsiveness in mice, respectively.ResultsChallenge of human bronchiolar and nasal epithelial cells with HDM extract induced the ER stress transducer, activating transcription factor 6 α (ATF6α) as well as protein disulfide isomerase, ERp57, in association with activation of caspase-3. SiRNA-mediated knockdown of ATF6α and ERp57 during HDM administration in mice resulted in a decrease in components of HDM-induced ER stress, disulfide mediated oligomerization of Bak, and activation of caspase-3. Furthermore, siRNA-mediated knockdown of ATF6α and ERp57 led to decreased inflammation, airway hyperresponsiveness and airway fibrosis.ConclusionCollectively, our work indicates that HDM induces ER stress in airway epithelial cells and that ATF6α and ERp57 play a significant role in the development of cardinal features of allergic airways disease. Inhibition of ER stress responses may provide a potential therapeutic avenue in chronic asthma and sub-epithelial fibrosis associated with loss of lung function.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Antigen-induced mast cell expansion and bronchoconstriction in a mouse model of asthma.

Shannon Li; Minara Aliyeva; Nirav Daphtary; Rebecca A. Martin; Matthew E. Poynter; Shannon F. Kostin; Jos van der Velden; Alexandra M. Hyman; Christopher S. Stevenson; Jonathan E. Phillips; Lennart K. A. Lundblad

Lung mastocytosis and antigen-induced bronchoconstriction are common features in allergic asthmatics. It is therefore important that animal models of asthma show similar features of mast cell inflammation and reactivity to inhaled allergen. We hypothesized that house dust mite (HDM) would induce mastocytosis in the lung and that inhalation of HDM would trigger bronchoconstriction. Mice were sensitized with intranasal HDM extract, and the acute response to nebulized HDM or the mast cell degranulating compound 48/80 was measured with respiratory input impedance. Using the constant-phase model we calculated Newtonian resistance (Rn) reflecting the conducting airways, tissue dampening (G), and lung elastance (H). Bronchoalveolar lavage fluid was analyzed for mouse mast cell protease-1 (mMCP-1). Lung tissue was analyzed for cytokines, histamine, and α-smooth muscle actin (α-SMA), and histological slides were stained for mast cells. HDM significantly increased Rn but H and G remained unchanged. HDM significantly expanded mast cells compared with control mice; at the same time mMCP-1, α-SMA, Th2 cytokines, and histamine were significantly increased. Compound 48/80 inhalation caused bronchoconstriction and mMCP-1 elevation similarly to HDM inhalation. Bronchoconstriction was eliminated in mast cell-deficient mice. We found that antigen-induced acute bronchoconstriction has a distinct phenotype in mice. HDM sensitization caused lung mastocytosis, and we conclude that inhalation of HDM caused degranulation of mast cells leading to an acute bronchoconstriction without affecting the lung periphery and that mast cell-derived mediators are responsible for the development of the HDM-induced bronchoconstriction in this model.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation

Jos van der Velden; Sidra M. Hoffman; John F. Alcorn; Jane E. Tully; David G. Chapman; Karolyn G. Lahue; Amy S. Guala; Lennart K. A. Lundblad; Minara Aliyeva; Nirav Daphtary; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1-/- mice by intranasal administration of HDM extract. WT and JNK1-/- mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1-/- mice. In addition, the profibrotic cytokine TGF-β1 and phosphorylation of Smad3 were equally increased in WT and JNK1-/- mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1-/- mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1-/- mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1-/- mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Genetic ablation of glutaredoxin-1 causes enhanced resolution of airways hyperresponsiveness and mucus metaplasia in mice with allergic airways disease

Sidra M. Hoffman; Jane E. Tully; Karolyn G. Lahue; Vikas Anathy; James D. Nolin; Amy S. Guala; Jos van der Velden; Ye-Shih Ho; Minara Aliyeva; Nirav Daphtary; Lennart K. A. Lundblad; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.


The Journal of Allergy and Clinical Immunology | 2016

Protein disulfide isomerase–endoplasmic reticulum resident protein 57 regulates allergen-induced airways inflammation, fibrosis, and hyperresponsiveness

Sidra M. Hoffman; David G. Chapman; Karolyn G. Lahue; Jonathon M. Cahoon; Gurkiranjit K. Rattu; Nirav Daphtary; Minara Aliyeva; Karen A. Fortner; Serpil C. Erzurum; Suzy Comhair; Prescott G. Woodruff; Nirav R. Bhakta; Anne E. Dixon; Charles G. Irvin; Yvonne M. W. Janssen-Heininger; Matthew E. Poynter; Vikas Anathy

BACKGROUND Evidence for association between asthma and the unfolded protein response is emerging. Endoplasmic reticulum resident protein 57 (ERp57) is an endoplasmic reticulum-localized redox chaperone involved in folding and secretion of glycoproteins. We have previously demonstrated that ERp57 is upregulated in allergen-challenged human and murine lung epithelial cells. However, the role of ERp57 in asthma pathophysiology is unknown. OBJECTIVES Here we sought to examine the contribution of airway epithelium-specific ERp57 in the pathogenesis of allergic asthma. METHODS We examined the expression of ERp57 in human asthmatic airway epithelium and used murine models of allergic asthma to evaluate the relevance of epithelium-specific ERp57. RESULTS Lung biopsy specimens from asthmatic and nonasthmatic patients revealed a predominant increase in ERp57 levels in epithelium of asthmatic patients. Deletion of ERp57 resulted in a significant decrease in inflammatory cell counts and airways resistance in a murine model of allergic asthma. Furthermore, we observed that disulfide bridges in eotaxin, epidermal growth factor, and periostin were also decreased in the lungs of house dust mite-challenged ERp57-deleted mice. Fibrotic markers, such as collagen and α smooth muscle actin, were also significantly decreased in the lungs of ERp57-deleted mice. Furthermore, adaptive immune responses were dispensable for house dust mite-induced endoplasmic reticulum stress and airways fibrosis. CONCLUSIONS Here we show that ERp57 levels are increased in the airway epithelium of asthmatic patients and in mice with allergic airways disease. The ERp57 level increase is associated with redox modification of proinflammatory, apoptotic, and fibrotic mediators and contributes to airways hyperresponsiveness. The strategies to inhibit ERp57 specifically within the airways epithelium might provide an opportunity to alleviate the allergic asthma phenotype.


American Journal of Respiratory Cell and Molecular Biology | 2016

Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma

Jennifer L. Ather; Michael Chung; Laura R. Hoyt; Matthew J. Randall; Anna Georgsdottir; Nirav Daphtary; Minara Aliyeva; Benjamin T. Suratt; Jason H. T. Bates; Charles G. Irvin; Sheila R. Russell; Patrick M. Forgione; Anne E. Dixon; Matthew E. Poynter

Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease

Jalahalli M. Siddesha; Emily M. Nakada; Bethany R. Mihavics; Sidra M. Hoffman; Gurkiranjit K. Rattu; Nicolas Chamberlain; Jonathon M. Cahoon; Karolyn G. Lahue; Nirav Daphtary; Minara Aliyeva; David G. Chapman; Dhimant Desai; Matthew E. Poynter; Vikas Anathy

Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases.


American Journal of Respiratory Cell and Molecular Biology | 2016

Ablation of Glutaredoxin-1 Modulates House Dust Mite-Induced Allergic Airways Disease in Mice

Sidra M. Hoffman; Xi Qian; James D. Nolin; David G. Chapman; Shi Biao Chia; Karolyn G. Lahue; Robert W. Schneider; Jennifer L. Ather; Matthew J. Randall; David H. McMillan; Jane T. Jones; Douglas J. Taatjes; Minara Aliyeva; Nirav Daphtary; Sarah Abdalla; Lennart K. A. Lundblad; Ye-Shih Ho; Vikas Anathy; Charles G. Irvin; Emiel F.M. Wouters; Niki L. Reynaert; Anne E. Dixon; Albert van der Vliet; Matthew E. Poynter; Yvonne M. W. Janssen-Heininger

Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown. In the present study, we examined the impact of genetic ablation of Glrx1 in the pathogenesis of house dust mite (HDM)-induced allergic airways disease in mice. Wild-type (WT) or Glrx1(-/-) mice were instilled intranasally with HDM on 5 consecutive days for 3 weeks. As expected, overall PSSG was increased in Glrx1(-/-) HDM mice as compared with WT animals. Total cells in bronchoalveolar lavage fluid were similarly increased in HDM-treated WT and Glrx1(-/-) mice. However, in response to HDM, mice lacking Glrx1 demonstrated significantly more neutrophils and macrophages but fewer eosinophils as compared with HDM-exposed WT mice. mRNA expression of the Th2-associated cytokines IL-13 and IL-6, as well as mucin-5AC (Muc5ac), was significantly attenuated in Glrx1(-/-) HDM-treated mice. Conversely, mRNA expression of IFN-γ and IL-17A was increased in Glrx1(-/-) HDM mice compared with WT littermates. Restimulation of single-cell suspensions isolated from lungs or spleens with HDM resulted in enhanced IL-17A and decreased IL-5 production in cells derived from inflamed Glrx1(-/-) mice compared with WT animals. Finally, HDM-induced tissue damping and elastance were significantly attenuated in Glrx1(-/-) mice compared with WT littermates. These results demonstrate that the Glrx1-PSSG axis plays a pivotal role in HDM-induced allergic airways disease in association with enhanced type 2 inflammation and restriction of IFN-γ and IL-17A.


Pulmonary Pharmacology & Therapeutics | 2017

The role of iNKT cells on the phenotypes of allergic airways in a mouse model

Lennart K. A. Lundblad; Nazey Z Gulec; Matthew E. Poynter; Victoria L. DeVault; Oliver Dienz; Jonathan E. Boyson; Nirav Daphtary; Minara Aliyeva; Jennifer L. Ather; Felix Scheuplein; Robert G. Schaub

iNKT cells and mast cells have both been implicated in the syndrome of allergic asthma through their activation-induced release of Th2 type cytokines and secretion of histamine and other mediators, respectively, which can promote airways hyperresponsiveness (AHR) to agents such as methacholine. However, a mechanistic link between iNKT cells and mast cell recruitment or activation has never been explored. Our objective was to determine whether iNKT cells are necessary for the recruitment of mast cells and if iNKT cells can influence the acute allergen induced bronchoconstriction (AIB) caused by mast cell mediator release. To do so, we pharmacologically eliminated iNKT cells using a specific antibody (NKT-14) and examined its impact on airway inflammation and physiological phenotype. In mice treated with NKT-14, the elimination of iNKT cells was sufficient to prevent AHR and pulmonary eosinophilic inflammation elicited by administration of the iNKT cell agonist αGalCer. In mice treated with NKT-14 and then sensitized and challenged with house dust mite extract (HDM), eliminating the iNKT cells significantly reduced both AHR and AIB but did not affect pulmonary inflammation, the mast cell population, nor the release of the mast cell mediators mast cell protease-1 and prostaglandin D2. We conclude that while iNKT cells contribute to the phenotype of allergic airways disease through the manifestation of AIB and AHR, their presence is not required for mast cell recruitment and activation, or to generate the characteristic inflammatory response subsequent to allergen challenge.

Collaboration


Dive into the Nirav Daphtary's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge