Nirosha J. Murugan
Laurentian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nirosha J. Murugan.
PLOS ONE | 2013
Nirosha J. Murugan; Lukasz M. Karbowski; Robert M. Lafrenie; Michael A. Persinger
A tandem sequence composed of weak temporally-patterned magnetic fields was discovered that produced 100% dissolution of planarian in their home environment. After five consecutive days of 6.5 hr exposure to a frequency-modulated magnetic field (0.1 to 2 µT), immediately followed by an additional 6.5 hr exposure on the fifth day, to another complex field (0.5 to 5 µT) with exponentially increasing spectral power 100% of planarian dissolved within 24 hr. Reversal of the sequence of the fields or presentation of only one pattern for the same duration did not produce this effect. Direct video evidence showed expansion (by visual estimation ∼twice normal volume) of the planarian following the first field pattern followed by size reduction (estimated ∼1/2 of normal volume) and death upon activation of the second pattern. The contortions displayed by the planarian during the last field exposure suggest effects on contractile proteins and alterations in the cell membrane’s permeability to water.
International Journal of Radiation Biology | 2014
Nirosha J. Murugan; Michael A. Persinger
Abstract Purpose: The behavioral responses of planaria to the exposures of a range of concentrations of morphine (μM to attoM) or the μ-opiate antagonist naloxone or to either of these compounds and a burst-firing magnetic field (5 μT) were studied. Material and methods: The locomotor velocity (LMV) of planaria was measured after individual worms were exposed to increasing concentrations from attomolar to micromolar of morphine or naloxone, physiologically patterned magnetic fields or a combination of the two. Results: Compared to spring water controls, the 2-hour exposure to the patterned magnetic field before measurement reduced activity by about 50% which was comparable to the non-specific effects of morphine and naloxone across all dosages except 1 attomolar that did not differ from spring water. The specific dosage of 100 nM produced additional marked reduction in activity for planaria exposed to either morphine or naloxone while only 1 pM of morphine produced this effect. Conclusion: The results support the presence of at least two receptor subtypes that mediate the diminished activity effects elicited by morphine specifically and suggests that exposure to the specifically patterned magnetic field produces a behavioral suppression whose magnitude is similar to the ‘dose independent’ effects from this opiate.
FEBS Open Bio | 2015
Michael A. Persinger; Blake T. Dotta; Lukasz M. Karbowski; Nirosha J. Murugan
The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 105–106 cells was explored experimentally. The vertical component of the earths magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10−12W·m−2) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10−18J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments.
FEBS Open Bio | 2015
Lukasz M. Karbowski; Nirosha J. Murugan; Michael A. Persinger
Cosic discovered that spectral analyses of a protein sequence after each constituent amino acid had been transformed into an appropriate pseudopotential predicted a resonant energy between interacting molecules. Several experimental studies have verified the predicted peak wavelength of photons within the visible or near‐visible light band for specific molecules. Here, this concept has been applied to a classic signaling pathway, JAK–STAT, traditionally composed of nine sequential protein interactions. The weighted linear average of the spectral power density (SPD) profiles of each of the eight “precursor” proteins displayed remarkable congruence with the SPD profile of the terminal molecule (CASP‐9) in the pathway. These results suggest that classic and complex signaling pathways in cells can also be expressed as combinations of resonance energies.
PLOS ONE | 2016
Nicolas Rouleau; Nirosha J. Murugan; Lucas W.E. Tessaro; Justin N. Costa; Michael A. Persinger; Sam M. Doesburg
The structure of the post-mortem human brain can be preserved by immersing the organ within a fixative solution. Once the brain is perfused, cellular and histological features are maintained over extended periods of time. However, functions of the human brain are not assumed to be preserved beyond death and subsequent chemical fixation. Here we present a series of experiments which, together, refute this assumption. Instead, we suggest that chemical preservation of brain structure results in some retained functional capacity. Patterns similar to the living condition were elicited by chemical and electrical probes within coronal and sagittal sections of human temporal lobe structures that had been maintained in ethanol-formalin-acetic acid. This was inferred by a reliable modulation of frequency-dependent microvolt fluctuations. These weak microvolt fluctuations were enhanced by receptor-specific agonists and their precursors (i.e., nicotine, 5-HTP, and L-glutamic acid) as well as attenuated by receptor-antagonists (i.e., ketamine). Surface injections of 10 nM nicotine enhanced theta power within the right parahippocampal gyrus without any effect upon the ipsilateral hippocampus. Glutamate-induced high-frequency power densities within the left parahippocampal gyrus were correlated with increased photon counts over the surface of the tissue. Heschl’s gyrus, a transverse convexity on which the primary auditory cortex is tonotopically represented, retained frequency-discrimination capacities in response to sweeps of weak (2μV) square-wave electrical pulses between 20 Hz and 20 kHz. Together, these results suggest that portions of the post-mortem human brain may retain latent capacities to respond with potential life-like and virtual properties.
International Journal of Biometeorology | 2016
Joseph M. Caswell; Trevor N. Carniello; Nirosha J. Murugan
Increasing research into heliobiology and related fields has revealed a myriad of potential relationships between space weather factors and terrestrial biology. Additionally, many studies have indicated cyclicity in incidence of various diseases along with many aspects of cardiovascular function. The current study examined annual mortality associated with hypertensive diseases in Canada from 1979 to 2009 for periodicities and linear relationships with a range of heliophysical parameters. Analyses indicated a number of significant lagged correlations between space weather and hypertensive mortality, with solar wind plasma beta identified as the likely source of these relationships. Similar periodicities were observed for geomagnetic activity and hypertensive mortality. A significant rhythm was revealed for hypertensive mortality centered on a 9.6-year cycle length, while geomagnetic activity was fit with a 10.1-year cycle. Cross-correlograms of mortality with space weather demonstrated a 10.67-year periodicity coinciding with the average 10.6-year solar cycle length for the time period examined. Further quantification and potential implications are discussed.
Electromagnetic Biology and Medicine | 2017
Nirosha J. Murugan; Lukasz M. Karbowski; Michael A. Persinger
ABSTRACT Synergisms between a physiologically patterned magnetic field that is known to enhance planarian growth and suppress proliferation of malignant cells in culture and three light emitting diode (LED) generated visible wavelengths (blue, green, red) upon planarian regeneration and melanoma cell numbers were discerned. Five days of hourly exposures to either a physiologically patterned (2.5–5.0 μT) magnetic field, one of three wavelengths (3 kLux) or both treatments simultaneously indicated that red light (680 nm), blue light (470 nm) or the magnetic field significantly facilitated regeneration of planarian compared to sham field exposed planarian. Presentation of both light and magnetic field conditions enhanced the effect. Whereas the blue and red light diminished the growth of malignant (melanoma) cells, the effect was not as large as that produced by the magnetic field. Only the paired presentation of the blue light and magnetic field enhanced the suppression. On the other hand, the changes following green light (540 nm) exposure did not differ from the control condition and green light presented with the magnetic field eliminated its effects for both the planarian and melanoma cells. These results indicate specific colors affect positive adaptation that is similar to weak, physiologically patterned frequency modulated (8–24 Hz) magnetic fields and that the two forms of energy can synergistically summate or cancel.
Dermatology Reports | 2014
Kaitlin Vanderbeck; Lyne Giroux; Nirosha J. Murugan; Lukasz M. Karbowski
Hailey-Hailey disease (HHD) is a chronic familial bullous disease characterized by recurrent blisters and erosions typically at friction-prone areas of the body accompanied by acantholysis upon histologic examination. There are a number of therapies used in the management of HHD. Its symptoms have been effectively treated with antimicrobial therapies, corticosteroids and other agents such as cyclosporine and prednisone. However, such treatments are not always effective. Therefore, there is a need for new treatments for the management of HHD. In this report, a patient with long-standing HHD responsive only to high levels of prednisone is described. After the successful tapering and cessation of oral prednisone the patient began a new combination therapy of complementary doses of oral alitretinoin, and narrowband UVB therapy, which yielded a favorable response within 2-3 weeks. After 6 weeks, a mono-therapy of daily (30 mg) oral alitretinoin was sufficient to maintain successful near-complete remission of the disease.
Journal of Cancer Science & Therapy | 2016
Nirosha J. Murugan; Lukasz M. Karbowski; Blake T. Dotta; David A. E. Vares; Kevin S. Saroka; Robert M. Lafrenie; Michael A. Persinger
Emphasis upon early detection of malignant cellular growths rather than imaging could allow earlier intervention. Photon emissions from malignant cells even when they constitute a very small proportion of the normal organ has been shown to require a technical understanding of the spectral power density profiles that can be predicted by Cosic’s Molecular Resonance Recognition equation. Here we demonstrate experimentally a simpler more robust detection method involving specific filters of photon emissions from cells in culture. Photons from human pancreatic malignant cancer cells displayed conspicuously suppressed spikes of photons within a narrow band (500 nm) but not at 370 nm, 420 nm, 620 nm, 790 nm, or 950 nm increments compared to non-malignant human embryonic kidney cells. Given the recent demonstration that malignant cells can “store” photons within a specific wavelength when pulsed at the same pattern as a yoked magnetic field and re-emit the photons in this wavelength tens of minutes later, diminishment of power within specific 10 nm increments of visible wavelength spectra may serve as an early detection of imminent malignancy.
Archives in Cancer Research | 2016
David A. E. Vares; Blake T. Dotta; Kevin S. Saroka; Lukasz M. Karbowski; Nirosha J. Murugan; Michael A. Persinger
The human body emits a continuous field of photons that may exhibit holographic-like properties. If this concept is applicable then the appropriate technology and quantitative methods would have the capacity to detect anomalous sources anywhere within the volume of the body. To discern the feasibility of this concept we tested the capacity of four photomultiplier units to discriminate the presence or absence of a human being within a hyperdark (10-12 W·m-2) small room specifically constructed for this purpose. Only 100 s of measurements of photon emissions (50 Hz sampling, 20 ms bins) were required to obtain 100% accurate discrimination. Spectral Power Densities (SPD) for the photon counts when human subjects were present or not present were sufficiently complex to allow potential discernment of different health states. Preliminary data have already suggested that this particular method has the potential to function as a sensi