Nirveek Bhattacharjee
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nirveek Bhattacharjee.
Lab on a Chip | 2016
Nirveek Bhattacharjee; Arturo Urrios; Shawn Kang; Albert Folch
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.
Lab on a Chip | 2015
Anthony K. Au; Nirveek Bhattacharjee; Lisa F. Horowitz; Tim C. Chang; Albert Folch
Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technologys use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.
Integrative Biology | 2010
Nirveek Bhattacharjee; Nianzhen Li; Thomas M. Keenan; Albert Folch
The precise wiring of the nervous system is made possible by a complex navigation map created by attractive and repulsive biochemical cues, which guide the axons to their final targets. In order to unravel the mechanisms directing the growth and guidance of axons, we have designed an open-chamber mammalian-neuron-benign microfluidic platform that allows us to subject dissociated single neurons in culture to stable, precise gradients of diffusible biochemical cues, with negligible shear stress on the cells. We demonstrate (for the first time) the evidence of a directed response of dissociated mammalian neurons in vitro to a diffusible gradient of netrin.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Alejandra C. Ventura; Alan Bush; Gustavo Vasen; Matías A. Goldín; Brianne Burkinshaw; Nirveek Bhattacharjee; Albert Folch; Roger Brent; Ariel Chernomoretz; Alejandro Colman-Lerner
Significance Many cell decisions depend on precise measurements of external ligands reversibly bound to receptors. Yeast cells orient in gradients of sex pheromone detecting differences in the amount of ligand-receptor complex. However, yeast can orient in gradients with nearly all receptors occupied. We describe a general systems-level mechanism, pre-equilibrium sensing and signaling (PRESS), which overcomes this saturation limit by shifting and expanding the input dynamic range to which cells can respond. PRESS requires that events downstream of the receptor be transient and faster than the time required for the receptor to reach equilibrium binding. Experiments and simulations show that PRESS operates in yeast and may help cells orient in gradients. Many ligand-receptor interactions are slow, suggesting that PRESS is widespread throughout eukaryotes. Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.
Biomicrofluidics | 2011
Christopher G. Sip; Nirveek Bhattacharjee; Albert Folch
Microfluidics has become increasingly important for the study of biochemical cues because it enables exquisite spatiotemporal control of the microenvironment. Well-characterized, stable, and reproducible generation of biochemical gradients is critical for understanding the complex behaviors involved in many biological phenomena. Although many microfluidic devices have been developed which achieve these criteria, the ongoing challenge for these platforms is to provide a suitably benign and physiologically relevant environment for cell culture in a user-friendly format. To achieve this paradigm, microfluidic designs must consider the full scope of cell culture from substrate preparation, cell seeding, and long-term maintenance to properly observe gradient sensing behavior. In addition, designs must address the challenges associated with altered culture conditions and shear forces in flow-based devices. With this consideration, we have designed and characterized a microfluidic device based on the principle of stacked flows to achieve highly stable gradients of diffusible molecules over large areas with extremely low shear forces. The device utilizes a benign vacuum sealing strategy for reversible application to pre-established cell cultures. We apply this device to an existing culture of breast cancer cells to demonstrate the negligible effect of its shear flow on migratory behavior. Lastly, we extend the stacked-flow design to demonstrate its scalable architecture with a prototype device for generating an array of combinatorial gradients.
Lab on a Chip | 2014
Christopher G. Sip; Nirveek Bhattacharjee; Albert Folch
Gradients of biochemical molecules play a key role in many physiological processes such as axon growth, tissue morphogenesis, and trans-epithelium nutrient transport, as well as in pathophysiological phenomena such as wound healing, immune response, bacterial invasion, and cancer metastasis. In this paper, we report a microfluidic transwell insert for generating quantifiable concentration gradients in a user-friendly and modular format that is compatible with conventional cell cultures and with tissue explant cultures. The device is simply inserted into a standard 6-well plate, where it hangs self-supported at a distance of ~250 μm above the cell culture surface. The gradient is created by small microflows from the device, through an integrated track-etched porous membrane, into the cell culture well. The microfluidic transwell can deliver stable, quantifiable gradients over a large area with extremely low fluid shear stress to dissociated cells or tissue explants cultured independently on the surface of a 6-well plate. We used finite-element modeling to describe the porous membrane flow and molecular transport and to predict gradients generated by the device. Using the device, we applied a gradient of the chemotactic peptide N-formyl-met-leu-phe (fMLP) to a large population of HL-60 cells (a neutrophil cell line) and directly observed the migration with time-lapse microscopy. On quantification of the chemotactic response with an automated tracking algorithm, we found 74% of the cells moving towards the gradient. Additionally, the modular design and low fluid shear stress made it possible to apply gradients of growth factors and second messengers to mouse retinal explant cultures. With a simplified interface and well-defined gradients, the microfluidic transwell device has potential for broad applications to gradient-sensing biology.
Advanced Materials | 2018
Nirveek Bhattacharjee; Cesar Parra‐Cabrera; Yong Tae Kim; Alexandra P. Kuo; Albert Folch
The advantageous physiochemical properties of poly(dimethylsiloxane) (PDMS) have made it an extremely useful material for prototyping in various technological, scientific, and clinical areas. However, PDMS molding is a manual procedure and requires tedious assembly steps, especially for 3D designs, thereby limiting its access and usability. On the other hand, automated digital manufacturing processes such as stereolithography (SL) enable true 3D design and fabrication. Here the formulation, characterization, and SL application of a 3D-printable PDMS resin (3DP-PDMS) based on commercially available PDMS-methacrylate macromers, a high-efficiency photoinitiator and a high-absorbance photosensitizer, is reported. Using a desktop SL-printer, optically transparent submillimeter structures and microfluidic channels are demonstrated. An optimized blend of PDMS-methacrylate macromers is also used to SL-print structures with mechanical properties similar to conventional thermally cured PDMS (Sylgard-184). Furthermore, it is shown that SL-printed 3DP-PDMS substrates can be rendered suitable for mammalian cell culture. The 3DP-PDMS resin enables assembly-free, automated, digital manufacturing of PDMS, which should facilitate the prototyping of devices for microfluidics, organ-on-chip platforms, soft robotics, flexible electronics, and sensors, among others.
international conference on solid state sensors actuators and microsystems | 2009
Nirveek Bhattacharjee; Nianzhen Li; Albert Folch
The precise wiring of the nervous system is made possible by a complex navigation map created by attractive and repulsive biochemical cues, which guide the axons to their final targets. In order to unravel the mechanisms directing the growth and guidance of axons, we have designed an open-chamber mammalian-neuron-benign microfluidic platform that allows us to subject dissociated single neurons in culture to stable, precise gradients of diffusible biochemical cues, with negligible shear stress on the cells. We demonstrate (for the first time) the evidence of a directed response of dissociated mammalian neurons in vitro to a diffusible gradient of netrin.
Micromachines | 2018
Yong Kim; Kurt Castro; Nirveek Bhattacharjee; Albert Folch
We have developed a sequential stereolithographic co-printing process using two different resins for fabricating porous barriers in microfluidic devices. We 3D-printed microfluidic channels with a resin made of poly(ethylene glycol) diacrylate (MW = 258) (PEG-DA-258), a UV photoinitiator, and a UV sensitizer. The porous barriers were created within the microchannels in a different resin made of either PEG-DA (MW = 575) (PEG-DA-575) or 40% (w/w in water) PEG-DA (MW = 700) (40% PEG-DA-700). We showed selective hydrogen ion diffusion across a 3D-printed PEG-DA-575 porous barrier in a cross-channel diffusion chip by observing color changes in phenol red, a pH indicator. We also demonstrated the diffusion of fluorescein across a 3D-printed 40% PEG-DA-700 porous barrier in a symmetric-channel diffusion chip by measuring fluorescence intensity changes across the porous barrier. Creating microfluidic chips with integrated porous barriers using a semi-automated 3D printing process shortens the design and processing time, avoids assembly and bonding complications, and reduces manufacturing costs compared to micromolding processes. We believe that our digital manufacturing method for fabricating selective porous barriers provides an inexpensive, simple, convenient and reproducible route to molecule delivery in the fields of molecular filtration and cell-based microdevices.
Biomicrofluidics | 2016
Jonathan W. Cheng; Tim C. Chang; Nirveek Bhattacharjee; Albert Folch
Microfluidic devices can deliver soluble factors to cell and tissue culture microenvironments with precise spatiotemporal control. However, enclosed microfluidic environments often have drawbacks such as the need for continuous culture medium perfusion which limits the duration of experiments, incongruity between microculture and macroculture, difficulty in introducing cells and tissues, and high shear stress on cells. Here, we present an open-chamber microfluidic device that delivers hydrodynamically focused streams of soluble reagents to cells over long time periods (i.e., several hours). We demonstrate the advantage of the open chamber by using conventional cell culture techniques to induce the differentiation of myoblasts into myotubes, a process that occurs in 7-10 days and is difficult to achieve in closed chamber microfluidic devices. By controlling the flow rates and altering the device geometry, we produced sharp focal streams with widths ranging from 36 μm to 187 μm. The focal streams were reproducible (∼12% variation between units) and stable (∼20% increase in stream width over 10 h of operation). Furthermore, we integrated trenches for micropatterning myoblasts and microtraps for confining single primary myofibers into the device. We demonstrate with finite element method (FEM) simulations that shear stresses within the cell trench are well below values known to be deleterious to cells, while local concentrations are maintained at ∼22% of the input concentration. Finally, we demonstrated focused delivery of cytoplasmic and nuclear dyes to micropatterned myoblasts and myofibers. The open-chamber microfluidic flow-focusing concept combined with micropatterning may be generalized to other microfluidic applications that require stringent long-term cell culture conditions.