Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nisa V. Salim is active.

Publication


Featured researches published by Nisa V. Salim.


Physical Chemistry Chemical Physics | 2013

Individual dispersion of carbon nanotubes in epoxy via a novel dispersion–curing approach using ionic liquids

Nishar Hameed; Nisa V. Salim; Tracey Hanley; Mrunali Sona; Bronwyn Fox; Qipeng Guo

The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.


Journal of Physical Chemistry B | 2011

Multiple vesicular morphologies in AB/AC diblock copolymer complexes through hydrogen bonding interactions

Nisa V. Salim; Qipeng Guo

We report for the first time multiple vesicular morphologies in block copolymer complexes formed in aqueous media via hydrogen bonding interactions. A model AB/AC diblock copolymer system consisting of polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) was examined using transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on PAA and PEO blocks of the two diblock copolymers. Upon the addition of PS-b-PEO, a variety of bilayer aggregates were formed in PS-b-PAA/PS-b-PEO complexes including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. Among these aggregates, ICCVs were observed as a new morphology. The morphology of aggregates was correlated with respect to the molar ratio of PEO to PAA. At [EO]/[AA] = 0.5, vesicles were observed, while MLVs were obtained at [EO]/[AA] = 1. TWVs and ICCVs were formed at [EO]/[AA] = 2 and 6, respectively. When [EO]/[AA] reached 8 and above, only irregular aggregates appeared. These findings suggest that complexation between two amphiphilic diblock copolymers is a viable approach to prepare polymer vesicles in aqueous media.


Journal of Chemical Physics | 2009

Microphase separation through competitive hydrogen bonding in self-assembled A-b-B/C diblock copolymer/homopolymer complexes

Nishar Hameed; Nisa V. Salim; Qipeng Guo

We present a study of microphase separation induced by competitive hydrogen bonding in A-b-B/C diblock copolymer/homopolymer complexes where the diblock copolymer A-b-B is immiscible and the homopolymer C can interact unequally with both A and B blocks through hydrogen bonding. A model system containing poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(4-vinyl phenol) (PVPh) in tetrahydrofuran was investigated. In these self-assembled complexes, microphase separation takes place due to the disparity in intermolecular interactions. Specifically, PVPh and P2VP blocks interact strongly to form complex, whereas PVPh and PMMA blocks interact weakly. The hydrogen bonding interactions were revealed by infrared spectroscopy and analyzed in terms of the difference in interassociation constants (K), i.e., interaction parameters of each blocks of the block copolymer to the homopolymer and according to the random phase approximation. The phase behavior of the complexes was investigated with small-angle x-ray scattering and transmission electron microscopy. A series of morphologies including lamellae, hexagonal cylinders, wormlike microdomains, and hierarchical structures was documented as a function of the copolymer concentration. Moreover, we outlined how hydrogen bonding determines the self-assembly and causes morphological transitions in different A-b-B/C diblock copolymer/homopolymer systems with respect to the K values.


Macromolecular Rapid Communications | 2012

A simple and effective approach to vesicles and large compound vesicles via complexation of amphiphilic block copolymer with polyelectrolyte in water.

Nisa V. Salim; Tracey Hanley; Lynne J. Waddington; Patrick G. Hartley; Qipeng Guo

This work reports for the first time a simple and effective approach to trigger a spheres-to- vesicles morphological transition from amphiphilic block copolymer/polyelectrolyte complexes in aqueous solution. Vesicles and large compound vesicles (LCVs) were prepared via complexation of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) with poly(acrylic acid) (PAA) in water and directly visualized using cryo-TEM. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on the PAA and PEO blocks of the block copolymer. The findings in this work suggest that complexation between amphiphilic block copolymer and polyelectrolyte is a viable approach to vesicles and LCVs in aqueous media.


RSC Advances | 2015

Development of hybrid composites for automotive applications: effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS–xGnP composites

Jyotishkumar Parameswaranpillai; George Joseph; K.P. Shinu; Seno Jose; Nisa V. Salim; Nishar Hameed

In this article, we report on a simple and cost effective approach for the development of light-weight, super-tough and stiff material for automotive applications. Nanocomposites based on PP/PS blend and exfoliated graphene nanoplatelets (xGnP) were prepared with and without SEBS. Mechanical, crystallization and thermal degradation properties were determined and correlated with phase morphology. The addition of xGnP to PP/PS blend increased the tensile modulus at the expense of toughness. The presence of xGnP increased the enthalpy of crystallization and enthalpy of fusion of PP in the blends, without affecting segmental mobility and thermal stability. Addition of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) improved the toughness of PP/PS blends, but decreased the stiffness. The incorporation of xGnP into this ternary blend generated a super-tough material with improved stiffness and tensile elongation, suitable for automotive applications. It is observed that the presence of SEBS diminished the tendency of agglomeration of xGnP and their unfavorable interactions with thermoplastics, which in turn reduced the internal friction in the matrix.


Cellulose | 2013

Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid

Nishar Hameed; Renyan Xiong; Nisa V. Salim; Qipeng Guo

Biodegradable blends were prepared from cellulose and poly (vinyl alcohol) (PVA) using the ionic liquid (IL) solvent, 1-butyl-3-methylimidazolium chloride. The blends were regenerated into films, fibers and rectangular blocks. The films showed optical transparency throughout the entire composition of the blends. The infrared spectroscopic experiments proved the existence of intermolecular hydrogen bonding interactions between the hydroxyl groups of cellulose and PVA. The miscibility between cellulose and PVA lead to increase in glass transition temperature (Tg) and of decrease in crystallinity of the blends. The Tg-composition data showed a negative deviation from Fox predictions, however fit well with BCKV model. The addition of PVA improved the tensile strength and elongation at break, considerably plasticizing cellulose. The blends can be degraded completely in soil. Moreover, the IL was completely recycled with high yield after the processing.


Langmuir | 2013

Nanofibrillar micelles and entrapped vesicles from biodegradable block copolymer/polyelectrolyte complexes in aqueous media.

Nisa V. Salim; Nishar Hameed; Tracey Hanley; Lynne J. Waddington; Patrick G. Hartley; Qipeng Guo

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.


Soft Matter | 2013

Microphase separation induced by competitive hydrogen bonding interactions in semicrystalline triblock copolymer/homopolymer complexes

Nisa V. Salim; Nishar Hameed; Tracey Hanley; Qipeng Guo

Microphase separation through competitive hydrogen bonding interactions in ABC/D triblock copolymer/homopolymer complexes is studied for the first time. This study investigated self-assembled nanostructures that are obtained in the bulk, by the complexation of a semicrystalline polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) (SVPEO) triblock copolymer with a poly(4-vinyl phenol) (PVPh) homopolymer in tetrahydrofuran (THF). In these complexes, microphase separation takes place due to the disparity in intermolecular interactions among PVPh/P4VP and PVPh/PEO pairs. At low PVPh concentrations, PEO interacts relatively weakly with PVPh, whereas in the complexes containing more than 30 wt% PVPh, the PEO block interacts considerably with PVPh, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the cylindrical morphology of a neat SVPEO triblock copolymer changes into lamellae structures at 20 wt% of PVPh then to disordered lamellae with 40 wt% PVPh. Wormlike structures are obtained in the complex with 50 wt% PVPh, followed by disordered spherical microdomains with size in the order of 40–50 nm in the complexes with 60–80 wt% PVPh. Moreover, when the content of PVPh increases to 80 wt%, the complexes show a completely homogenous phase of PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains. The fractional crystallization behavior in SVPEO and complexes at lower PVPh content was also examined. A structural model was proposed to explain the microphase separation and self-assembled morphologies of these complexes based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interactions between each component block of the copolymer and the homopolymer.


RSC Advances | 2016

A facile method to fabricate carbon nanostructures via the self-assembly of polyacrylonitrile/poly(methyl methacrylate-b-polyacrylonitrile) AB/B′ type block copolymer/homopolymer blends

Anbazhagan Palanisamy; Nisa V. Salim; Bronwyn L. Fox; P. Jyotishkumar; T. Pradeep; Nishar Hameed

The self-assembly and high temperature behavior of AB/B′ type block copolymer/homopolymer blends containing polyacrylonitrile (PAN) polymers were studied for the first time. Here, microphase separated nanostructures were formed in the poly(methyl methacrylate-b-polyacrylonitrile) (PMMAN) block copolymer and their blends with homopolymer PAN at various blend ratios. Additionally, these nanostructures were transformed into porous carbon nanostructures by sacrificing PMMA blocks via pyrolysis. Spherical and worm like morphologies were observed in both TEM and AFM images at different compositions. The thermal and phase behavior examinations showed good compatibility between the blend components in all studied compositions. The PAN homopolymer (B′) with a comparatively higher molecular weight than the corresponding block (B) of the block copolymer is expected to exhibit ‘dry brush’ behavior in this AB/B′ type system. This study provides a basic understanding of the miscibility and phase separation in the PMMAN/PAN system, which is important in the nanostructure formation of bulk PAN based materials with the help of block copolymers to develop advanced functional materials.


RSC Advances | 2015

Thermally flexible epoxy/cellulose blends mediated by an ionic liquid

Nishar Hameed; J. Bavishi; Jyotishkumar Parameswaranpillai; Nisa V. Salim; J. Joseph; Giridhar Madras; Bronwyn Fox

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Collaboration


Dive into the Nisa V. Salim's collaboration.

Top Co-Authors

Avatar

Nishar Hameed

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracey Hanley

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Jyotishkumar Parameswaranpillai

Cochin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronwyn L. Fox

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

George Joseph

Cochin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

K.P. Shinu

Cochin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge