Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nishar Hameed is active.

Publication


Featured researches published by Nishar Hameed.


Physical Chemistry Chemical Physics | 2013

Individual dispersion of carbon nanotubes in epoxy via a novel dispersion–curing approach using ionic liquids

Nishar Hameed; Nisa V. Salim; Tracey Hanley; Mrunali Sona; Bronwyn Fox; Qipeng Guo

The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.


Journal of Chemical Physics | 2009

Microphase separation through competitive hydrogen bonding in self-assembled A-b-B/C diblock copolymer/homopolymer complexes

Nishar Hameed; Nisa V. Salim; Qipeng Guo

We present a study of microphase separation induced by competitive hydrogen bonding in A-b-B/C diblock copolymer/homopolymer complexes where the diblock copolymer A-b-B is immiscible and the homopolymer C can interact unequally with both A and B blocks through hydrogen bonding. A model system containing poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(4-vinyl phenol) (PVPh) in tetrahydrofuran was investigated. In these self-assembled complexes, microphase separation takes place due to the disparity in intermolecular interactions. Specifically, PVPh and P2VP blocks interact strongly to form complex, whereas PVPh and PMMA blocks interact weakly. The hydrogen bonding interactions were revealed by infrared spectroscopy and analyzed in terms of the difference in interassociation constants (K), i.e., interaction parameters of each blocks of the block copolymer to the homopolymer and according to the random phase approximation. The phase behavior of the complexes was investigated with small-angle x-ray scattering and transmission electron microscopy. A series of morphologies including lamellae, hexagonal cylinders, wormlike microdomains, and hierarchical structures was documented as a function of the copolymer concentration. Moreover, we outlined how hydrogen bonding determines the self-assembly and causes morphological transitions in different A-b-B/C diblock copolymer/homopolymer systems with respect to the K values.


Soft Matter | 2012

A new route to nanostructured thermosets with block ionomer complexes

Shuying Wu; Shuhua Peng; Nishar Hameed; Qipeng Guo; Yiu-Wing Mai

We report a novel approach to prepare nanostructured thermosets using block ionomer complexes. Neither block copolymer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) nor block ionomer sulfonated SEBS (SSEBS) is miscible with diglycidyl ether of bisphenol A (DGEBA) type epoxy resin. It is thus surprising that the block ionomer complex of SSEBS with a tertiary amine-terminated poly(e-caprolactone) (PCL), denoted as SSEBS-c-PCL, can be used to prepare nanostructured epoxy thermosets. The block ionomer complex SSEBS-c-PCL is synthesized via neutralization of SSEBS with 3-dimethylamino-propylamine-terminated PCL. Sulfonation of SEBS yields the block ionomer SSEBS which is immiscible with epoxy. But the block ionomer complex SSEBS-c-PCL can be easily mixed with DGEBA. When the curing agent 4,4′-methylenedianiline (MDA) is added and the epoxy cures, the system retains the nanostructure. In cured epoxy thermosets containing up to 30 wt% SSEBS-c-PCL, the exclusion of the poly(ethylene-ran-butylene) (EB) phase forms spherical micro-domains surrounded by separated sulfonated polystyrene phase while the PCL side-chains of SSEBS-c-PCL are dissolved in the cured epoxy matrix. The spherical micro-domains are highly aggregated in the epoxy thermosets containing 40 and 50 wt% SSEBS-c-PCL. The existence of epoxy-miscible PCL side-chains in the block ionomer complex SSEBS-c-PCL avoids macro-phase separation. Hence, the block ionomer complex can act as an efficient modifier to achieve nanostructured epoxy thermosets.


Carbohydrate Polymers | 2012

Cellulose/polycaprolactone blends regenerated from ionic liquid 1-butyl-3-methylimidazolium chloride

Renyan Xiong; Nishar Hameed; Qipeng Guo

Ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIM[Cl]) was used to prepare cellulose/polycaprolactone (PCL) blend films. This solvent was recycled with high yield and purity after blend precipitation. The inter- and intra-molecular hydrogen bonding interactions in these blends were investigated by Fourier transform infrared (FTIR) spectroscopy and it was found that a new peak in the carbonyl region, assigned to hydrogen bonding between carbonyl groups of PCL and hydroxyl groups of cellulose in blends with PCL composition less than 40 wt%. Differential scanning calorimetry (DSC) results implied a partial miscibility of the two components by melting point depression. Moreover, the tensile properties of the blends can be adjusted by incorporating various amounts of PCL into cellulose. The blends show significant enhancement of thermal stability compared to the regenerated cellulose when the content of PCL is higher than 40 wt%. This work demonstrates an effective approach for the processing biodegradable blends from natural and synthetic polymers.


RSC Advances | 2015

Development of hybrid composites for automotive applications: effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS–xGnP composites

Jyotishkumar Parameswaranpillai; George Joseph; K.P. Shinu; Seno Jose; Nisa V. Salim; Nishar Hameed

In this article, we report on a simple and cost effective approach for the development of light-weight, super-tough and stiff material for automotive applications. Nanocomposites based on PP/PS blend and exfoliated graphene nanoplatelets (xGnP) were prepared with and without SEBS. Mechanical, crystallization and thermal degradation properties were determined and correlated with phase morphology. The addition of xGnP to PP/PS blend increased the tensile modulus at the expense of toughness. The presence of xGnP increased the enthalpy of crystallization and enthalpy of fusion of PP in the blends, without affecting segmental mobility and thermal stability. Addition of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) improved the toughness of PP/PS blends, but decreased the stiffness. The incorporation of xGnP into this ternary blend generated a super-tough material with improved stiffness and tensile elongation, suitable for automotive applications. It is observed that the presence of SEBS diminished the tendency of agglomeration of xGnP and their unfavorable interactions with thermoplastics, which in turn reduced the internal friction in the matrix.


Cellulose | 2013

Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid

Nishar Hameed; Renyan Xiong; Nisa V. Salim; Qipeng Guo

Biodegradable blends were prepared from cellulose and poly (vinyl alcohol) (PVA) using the ionic liquid (IL) solvent, 1-butyl-3-methylimidazolium chloride. The blends were regenerated into films, fibers and rectangular blocks. The films showed optical transparency throughout the entire composition of the blends. The infrared spectroscopic experiments proved the existence of intermolecular hydrogen bonding interactions between the hydroxyl groups of cellulose and PVA. The miscibility between cellulose and PVA lead to increase in glass transition temperature (Tg) and of decrease in crystallinity of the blends. The Tg-composition data showed a negative deviation from Fox predictions, however fit well with BCKV model. The addition of PVA improved the tensile strength and elongation at break, considerably plasticizing cellulose. The blends can be degraded completely in soil. Moreover, the IL was completely recycled with high yield after the processing.


Langmuir | 2013

Nanofibrillar micelles and entrapped vesicles from biodegradable block copolymer/polyelectrolyte complexes in aqueous media.

Nisa V. Salim; Nishar Hameed; Tracey Hanley; Lynne J. Waddington; Patrick G. Hartley; Qipeng Guo

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.


Nanoscale | 2013

Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers

Abbas Amini; Chun Cheng; Minoo Naebe; Jeffrey S. Church; Nishar Hameed; Alireza Asgari; Frank Will

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.


Soft Matter | 2013

Microphase separation induced by competitive hydrogen bonding interactions in semicrystalline triblock copolymer/homopolymer complexes

Nisa V. Salim; Nishar Hameed; Tracey Hanley; Qipeng Guo

Microphase separation through competitive hydrogen bonding interactions in ABC/D triblock copolymer/homopolymer complexes is studied for the first time. This study investigated self-assembled nanostructures that are obtained in the bulk, by the complexation of a semicrystalline polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) (SVPEO) triblock copolymer with a poly(4-vinyl phenol) (PVPh) homopolymer in tetrahydrofuran (THF). In these complexes, microphase separation takes place due to the disparity in intermolecular interactions among PVPh/P4VP and PVPh/PEO pairs. At low PVPh concentrations, PEO interacts relatively weakly with PVPh, whereas in the complexes containing more than 30 wt% PVPh, the PEO block interacts considerably with PVPh, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the cylindrical morphology of a neat SVPEO triblock copolymer changes into lamellae structures at 20 wt% of PVPh then to disordered lamellae with 40 wt% PVPh. Wormlike structures are obtained in the complex with 50 wt% PVPh, followed by disordered spherical microdomains with size in the order of 40–50 nm in the complexes with 60–80 wt% PVPh. Moreover, when the content of PVPh increases to 80 wt%, the complexes show a completely homogenous phase of PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains. The fractional crystallization behavior in SVPEO and complexes at lower PVPh content was also examined. A structural model was proposed to explain the microphase separation and self-assembled morphologies of these complexes based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interactions between each component block of the copolymer and the homopolymer.


Journal of Materials Chemistry | 2017

The effect of thermally induced chemical transformations on the structure and properties of carbon fibre precursors

Srinivas Nunna; Claudia Creighton; Bronwyn L. Fox; Minoo Naebe; Maxime Maghe; Mark J. Tobin; Keith R. Bambery; Jitraporn Vongsvivut; Nishar Hameed

The transformation of functional groups and development of radial structural heterogeneity during the thermal stabilization of polyacrylonitrile (PAN) precursor fibres were quantitatively defined for the first time using high resolution spectroscopic imaging techniques. The infrared imaging of isothermally treated fibre cross-sections reveals the radial distribution of specific functional groups (CN, CN, CH2, CH and CO) that forms the ladder polymer structure, the most critical stage in the precursor stabilization process. Apparently, it was found that the cyclization reaction of PAN polymer chains occurred at a faster rate in the core of the fibre during heating where it further selectively promoted the dehydrogenation reaction. On the other hand, the conversion of sp3 to sp2 hybridized carbon atoms was found to be higher around the skin layer compared to the core of the fibres, thus providing evidence for different cross-linking mechanisms in these regions. The simultaneous occurrence of a higher extent of cyclization and dehydrogenation reactions due to the excess heat developed in the core and a delay of oxygen diffusion in to the core of the fibres played a critical role in the polymer chain cross-linking in the skin and core regions that further led to the evolution of radial heterogeneity in the fibres. It was also found that the mechanical properties were built upon the structural transformations and the variation in the modulus across the fibre cross-section further confirmed the reaction mechanism.

Collaboration


Dive into the Nishar Hameed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyotishkumar Parameswaranpillai

Cochin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronwyn L. Fox

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tracey Hanley

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Joseph

Cochin University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suchart Siengchin

King Mongkut's University of Technology North Bangkok

View shared research outputs
Researchain Logo
Decentralizing Knowledge