Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nitai D. Mukhopadhyay is active.

Publication


Featured researches published by Nitai D. Mukhopadhyay.


Journal of Clinical Investigation | 2009

Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression

Byoung Kwon Yoo; Luni Emdad; Zao-zhong Su; Augusto Villanueva; Derek Y. Chiang; Nitai D. Mukhopadhyay; A.S. Mills; Samuel Waxman; Robert A. Fisher; Josep M. Llovet; Paul B. Fisher; Devanand Sarkar

Hepatocellular carcinoma (HCC) is a highly aggressive vascular cancer characterized by diverse etiology, activation of multiple signal transduction pathways, and various gene mutations. Here, we have determined a specific role for astrocyte elevated gene-1 (AEG1) in HCC pathogenesis. Expression of AEG1 was extremely low in human hepatocytes, but its levels were significantly increased in human HCC. Stable overexpression of AEG1 converted nontumorigenic human HCC cells into highly aggressive vascular tumors, and inhibition of AEG1 abrogated tumorigenesis by aggressive HCC cells in a xenograft model of nude mice. In human HCC, AEG1 overexpression was associated with elevated copy numbers. Microarray analysis revealed that AEG1 modulated the expression of genes associated with invasion, metastasis, chemoresistance, angiogenesis, and senescence. AEG1 also was found to activate Wnt/beta-catenin signaling via ERK42/44 activation and upregulated lymphoid-enhancing factor 1/T cell factor 1 (LEF1/TCF1), the ultimate executor of the Wnt pathway, important for HCC progression. Inhibition studies further demonstrated that activation of Wnt signaling played a key role in mediating AEG1 function. AEG1 also activated the NF-kappaB pathway, which may play a role in the chronic inflammatory changes preceding HCC development. These data indicate that AEG1 plays a central role in regulating diverse aspects of HCC pathogenesis. Targeted inhibition of AEG1 might lead to the shutdown of key elemental characteristics of HCC and could lead to an effective therapeutic strategy for HCC.


Bioinformatics | 2007

Causality and pathway search in microarray time series experiment

Nitai D. Mukhopadhyay; Snigdhansu Chatterjee

MOTIVATION Interaction among time series can be explored in many ways. All the approach has the usual problem of low power and high dimensional model. Here we attempted to build a causality network among a set of time series. The causality has been established by Granger causality, and then constructing the pathway has been implemented by finding the Minimal Spanning Tree within each connected component of the inferred network. False discovery rate measurement has been used to identify the most significant causalities. RESULTS Simulation shows good convergence and accuracy of the algorithm. Robustness of the procedure has been demonstrated by applying the algorithm in a non-stationary time series setup. Application of the algorithm in a real dataset identified many causalities, with some overlap with previously known ones. Assembled network of the genes reveals features of the network that are common wisdom about naturally occurring networks.


Clinical Cancer Research | 2013

ATM Kinase Inhibition Preferentially Sensitizes p53-Mutant Glioma to Ionizing Radiation

Laura Biddlestone-Thorpe; Muhammad Sajjad; Elizabeth Rosenberg; Jason M. Beckta; Nicholas C.K. Valerie; Mary E. Tokarz; Bret R. Adams; Alison F. Wagner; Ashraf Khalil; Donna Gilfor; Sarah E. Golding; Sumitra Deb; David Temesi; Alan Lau; Mark J. O'Connor; Kevin S. Choe; Luis F. Parada; Sang Kyun Lim; Nitai D. Mukhopadhyay

Purpose: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance. Ataxia–telangiectasia mutated (ATM) is an excellent target for radiosensitizing GBM because of its critical role in regulating the DNA damage response and p53, among other cellular processes. As a first step toward this goal, we recently showed that the novel ATM kinase inhibitor KU-60019 reduced migration, invasion, and growth, and potently radiosensitized human glioma cells in vitro. Experimental Design: Using orthotopic xenograft models of GBM, we now show that KU-60019 is also an effective radiosensitizer in vivo. Human glioma cells expressing reporter genes for monitoring tumor growth and dispersal were grown intracranially, and KU-60019 was administered intratumorally by convection-enhanced delivery or osmotic pump. Results: Our results show that the combined effect of KU-60019 and radiation significantly increased survival of mice 2- to 3-fold over controls. Importantly, we show that glioma with mutant p53 is much more sensitive to KU-60019 radiosensitization than genetically matched wild-type glioma. Conclusions: Taken together, our results suggest that an ATM kinase inhibitor may be an effective radiosensitizer and adjuvant therapy for patients with mutant p53 brain cancers. Clin Cancer Res; 19(12); 3189–200. ©2013 AACR.


Journal of Statistical Planning and Inference | 2003

Approximations and consistency of Bayes factors as model dimension grows

James O. Berger; Jayanta Kumar Ghosh; Nitai D. Mukhopadhyay

Stone (J. Roy. Statist. Soc. Ser. B 41 (1979) 276) showed that BIC can fail to be asymptotically consistent. Note, however, that BIC was developed as an asymptotic approximation to Bayes factors between models, and that the approximation is valid only under certain conditions. The counterexample of Stone arises in situations in which BIC is not an adequate approximation. We develop some new approximations to Bayes factors, that are valid for the situation considered in Stone (1979) and discuss related issues of consistency.


Hepatology | 2012

Astrocyte elevated gene-1 promotes hepatocarcinogenesis: Novel insights from a mouse model†‡

Jyoti Srivastava; Ayesha Siddiq; Luni Emdad; Prasanna K. Santhekadur; Dong Chen; Rachel Gredler; Xue-Ning Shen; Chadia L. Robertson; Catherine I. Dumur; Phillip B. Hylemon; Nitai D. Mukhopadhyay; Deepak Bhere; Khalid Shah; Rushdy Ahmad; Shah Giashuddin; Jillian E. Stafflinger; Mark A. Subler; Jolene J. Windle; Paul B. Fisher; Devanand Sarkar

Astrocyte elevated gene‐1 (AEG‐1) is a key contributor to hepatocellular carcinoma (HCC) development and progression. To enhance our understanding of the role of AEG‐1 in hepatocarcinogenesis, a transgenic mouse with hepatocyte‐specific expression of AEG‐1 (Alb/AEG1) was developed. Treating Alb/AEG‐1, but not wild‐type (WT) mice, with N‐nitrosodiethylamine resulted in multinodular HCC with steatotic features and associated modulation of expression of genes regulating invasion, metastasis, angiogenesis, and fatty acid synthesis. Hepatocytes isolated from Alb/AEG‐1 mice displayed profound resistance to chemotherapeutics and growth factor deprivation with activation of prosurvival signaling pathways. Alb/AEG‐1 hepatocytes also exhibited marked resistance toward senescence, which correlated with abrogation of activation of a DNA damage response. Conditioned media from Alb/AEG‐1 hepatocytes induced marked angiogenesis with elevation in several coagulation factors. Among these factors, AEG‐1 facilitated the association of factor XII (FXII) messenger RNA with polysomes, resulting in increased translation. Short interfering RNA–mediated knockdown of FXII resulted in profound inhibition of AEG‐1‐induced angiogenesis. Conclusion: We uncovered novel aspects of AEG‐1 functions, including induction of steatosis, inhibition of senescence, and activation of the coagulation pathway to augment aggressive hepatocarcinogenesis. The Alb/AEG‐1 mouse provides an appropriate model to scrutinize the molecular mechanism of hepatocarcinogenesis and to evaluate the efficacy of novel therapeutic strategies targeting HCC. (HEPATOLOGY 2012;56:1782–1791)


Circulation-cardiovascular Genetics | 2014

Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice

Stefano Toldo; Anindita Das; Eleonora Mezzaroma; Vinh Q Chau; Carlo Marchetti; David Durrant; Arun Samidurai; Benjamin W. Van Tassell; Chang Yin; Ramzi Ockaili; Navin Vigneshwar; Nitai D. Mukhopadhyay; Rakesh C. Kukreja; Antonio Abbate; Fadi N. Salloum

Background—Maintaining physiological levels of hydrogen sulfide during ischemia is necessary to limit injury to the heart. Because of the anti-inflammatory effects of hydrogen sulfide, we proposed that the hydrogen sulfide donor, sodium sulfide (Na2S), would attenuate myocardial injury through upregulation of protective microRNA-21 (miR-21) and suppression of the inflammasome, a macromolecular structure that amplifies inflammation and mediates further injury. Methods and Results—Na2S-induced miR-21 expression was measured by quantitative polymerase chain reaction in adult primary rat cardiomyocytes and in the mouse heart. We measured inflammasome formation and activity in cardiomyocytes challenged with lipopolysaccharide and ATP or simulated ischemia/reoxygenation and in the heart after regional myocardial ischemia/reperfusion, in the presence or absence of Na2S. To assess the direct anti-inflammatory effects of hydrogen sulfide in vivo, we used a peritonitis model by way of intraperitoneal injection of zymosan A. Na2S attenuated inflammasome formation and activity, measured by counting cytoplasmic aggregates of the scaffold protein apoptosis speck-like protein containing a caspase-recruitment domain (−57%) and caspase-1 activity (−50%) in isolated cardiomyocytes and in the mouse heart (all P<0.05). Na2S also inhibited apoptosis (−38%) and necrosis (−43%) in cardiomyocytes in vitro and reduced myocardial infarct size (−63%) after ischemia/reperfusion injury in vivo (all P<0.05). These protective effects were absent in cells treated with the miR-21 eraser, antagomiR-21, and in miR-21 knockout mice. Na2S also limited the severity of inflammasome-dependent inflammation in the model of peritonitis (P<0.05) in wild-type but not in miR-21 knockout mice. Conclusions—Na2S induces cardioprotective effects through miR-21–dependent attenuation of ischemic and inflammatory injury in cardiomyocytes.


International Journal of Radiation Oncology Biology Physics | 2012

Interfractional Positional Variability of Fiducial Markers and Primary Tumors in Locally Advanced Non-Small-Cell Lung Cancer During Audiovisual Biofeedback Radiotherapy

N Roman; Wes Shepherd; Nitai D. Mukhopadhyay; Geoffrey D. Hugo; Elisabeth Weiss

PURPOSE To evaluate implanted markers as a surrogate for tumor-based setup during image-guided lung cancer radiotherapy with audiovisual biofeedback. METHODS AND MATERIALS Seven patients with locally advanced non-small-cell lung cancer were implanted bronchoscopically with gold coils. Markers, tumor, and a reference bony structure (vertebra) were contoured for all 10 phases of the four-dimensional respiration-correlated fan-beam computed tomography and weekly four-dimensional cone-beam computed tomography. RESULTS The systematic/random interfractional marker-to-tumor centroid displacements were 2/3, 2/2, and 3/3 mm in the x (lateral), y (anterior-posterior), and z (superior-inferior) directions, respectively. The systematic/random interfractional marker-to-bone displacements were 2/3, 2/3, and 2/3 mm in the x, y, and z directions, respectively. The systematic/random tumor-to-bone displacements were 2/3, 2/4, and 4/4 mm in the x, y, and z directions, respectively. All displacements changed significantly over time (p < 0.0001). CONCLUSIONS Although marker-based image guidance may decrease the risk for geometric miss compared with bony anatomy-based positioning, the observed displacements between markers and tumor centroids indicate the need for repeated soft tissue imaging, particularly in situations with large tumor volume change and large initial marker-to-tumor centroid distance.


Clinical Cancer Research | 2013

Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling

Santanu Dasgupta; Mitchell E. Menezes; Swadesh K. Das; Luni Emdad; Aleksandar Janjic; Shilpa Bhatia; Nitai D. Mukhopadhyay; Chunbo Shao; Devanand Sarkar; Paul B. Fisher

Purpose: Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression. Experimental Design: Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knockdown was examined in multiple cells lines and key findings were validated in primary tumors. Results: Significantly higher (P = 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28 of 44) of primary tumors and an association was evident with stage (P = 0.01), grade (P = 0.03), and invasion status (P = 0.02). MDA-9/Syntenin overexpression in nontumorigenic HUC-1 cells increased proliferation (P = 0.0012), invasion (P = 0.0001), and EGF receptor (EGFR), AKT, phosphoinositide 3-kinase (PI3K), and c-Src expression. Alteration of β-catenin, E-cadherin, vimentin, claudin-1, ZO-1, and T-cell factor-4 (TCF4) expression was also observed. MDA-9/Syntenin knockdown in three UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and colocalization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin:AKT expressions with stage (P = 0.04, EGFR; P = 0.01, AKT). A correlation between MDA-9/Syntenin:β-catenin coexpression with stage (P = 0.03) and invasion (P = 0.04) was also evident. Conclusions: Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring, and therapeutic strategies for managing UCC. Clin Cancer Res; 19(17); 4621–33. ©2013 AACR.


International Journal of Radiation Oncology Biology Physics | 2014

Long-Term Results From the Contura Multilumen Balloon Breast Brachytherapy Catheter Phase 4 Registry Trial

Laurie W. Cuttino; Douglas W. Arthur; Frank A. Vicini; Dorin A. Todor; Thomas B. Julian; Nitai D. Mukhopadhyay

PURPOSE To describe the long-term outcomes from a completed, multi-institutional phase 4 registry trial using the Contura multilumen balloon (CMLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer. METHODS AND MATERIALS Three hundred forty-two evaluable patients were enrolled by 23 institutions between January 2008 and February 2011. All patients received 34 Gy in 10 fractions, delivered twice daily. Rigorous target coverage and normal tissue dose constraints were observed. RESULTS The median follow-up time was 36 months (range, 1-54 months). For the entire patient cohort of 342 patients, 10 patients experienced an ipsilateral breast tumor recurrence (IBTR). Eight of these IBTR were classified as true recurrences/marginal miss (TRMM), and 2 were elsewhere failures (EF). Local recurrence-free survival was 97.8% at 3 years. For the entire cohort, 88% of patients had good to excellent overall cosmesis. The overall incidence of infection was 8.5%. Symptomatic seroma was reported in only 4.4% of patients. A separate analysis was performed to determine whether improved outcomes would be observed for patients treated at high-volume centers with extensive brachytherapy experience. Three IBTR were observed in this cohort, only 1 of which was classified as a TRMM. Local recurrence-free survival at high-volume centers was 98.1% at 3 years. Overall cosmetic outcome and toxicity were superior in patients treated at high-volume centers. In these patients, 95% had good to excellent overall cosmesis. Infection was observed in only 2.9% of patients, and symptomatic seroma was reported in only 1.9%. CONCLUSION Use of the CMLB for APBI delivery is associated with acceptable long-term local control and toxicity. Local recurrence-free survival was 97.8% at 3 years. Significant (grade 3) toxicity was uncommon, and no grade 4 toxicity was observed. Treatment at high-volume centers was associated with decreased late toxicity.


International Journal of Radiation Oncology Biology Physics | 2012

Tumor, Lymph Node, and Lymph Node-to-Tumor Displacements Over a Radiotherapy Series: Analysis of Interfraction and Intrafraction Variations Using Active Breathing Control (ABC) in Lung Cancer

Elisabeth Weiss; Scott P. Robertson; Nitai D. Mukhopadhyay; Geoffrey D. Hugo

PURPOSE To estimate errors in soft tissue-based image guidance due to relative changes between primary tumor (PT) and affected lymph node (LN) position and volume, and to compare the results with bony anatomy-based displacements of PTs and LNs during radiotherapy of lung cancer. METHODS AND MATERIALS Weekly repeated breath-hold computed tomography scans were acquired in 17 lung cancer patients undergoing radiotherapy. PTs and affected LNs were manually contoured on all scans after rigid registration. Interfraction and intrafraction displacements in the centers of mass of PTs and LNs relative to bone, as well as LNs relative to PTs (LN-PT), were calculated. RESULTS The mean volume after 5 weeks was 65% for PTs and 63% for LNs. Systematic and random interfraction displacements were 2.6 to 4.6 mm and 2.7 to 2.9 mm, respectively, for PTs; 2.4 to 3.8 mm and 1.4 to 2.7 mm, respectively, for LNs; and 2.3 to 3.9 mm and 1.9 to 2.8 mm, respectively, for LN-PT. Systematic and random intrafraction displacements were less than 1 mm except in the superoinferior direction. Interfraction LN-PT displacements greater than 3 mm were observed in 67% of fractions and require a safety margin of 12 mm in the lateral direction, 11 mm in the anteroposterior direction, and 9 mm in the superoinferior direction. LN-PT displacements displayed significant time trends (p < 0.0001) and depended on the presence of pathoanatomic conditions of the ipsilateral lung, such as atelectasis. CONCLUSION Interfraction LN-PT displacements were mostly systematic and comparable to bony anatomy-based displacements of PTs or LNs alone. Time trends, large volume changes, and the influence of pathoanatomic conditions underline the importance of soft tissue-based image guidance and the potential of plan adaptation.

Collaboration


Dive into the Nitai D. Mukhopadhyay's collaboration.

Top Co-Authors

Avatar

Paul B. Fisher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Devanand Sarkar

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Weiss

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Chadia L. Robertson

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Santanu Dasgupta

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Dorin A. Todor

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Douglas W. Arthur

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Geoffrey D. Hugo

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jyoti Srivastava

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Luni Emdad

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge