Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nitzan Kol is active.

Publication


Featured researches published by Nitzan Kol.


Science | 2015

m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation

Shay Geula; Sharon Moshitch-Moshkovitz; Dan Dominissini; Abed AlFatah Mansour; Nitzan Kol; Mali Salmon-Divon; Vera Hershkovitz; Eyal Peer; Nofar Mor; Yair S. Manor; Moshe Shay Ben-Haim; Eran Eyal; Sharon Yunger; Yishay Pinto; Diego Jaitin; Sergey Viukov; Yoach Rais; Vladislav Krupalnik; Elad Chomsky; Mirie Zerbib; Itay Maza; Yoav Rechavi; Rada Massarwa; Suhair Hanna; Ido Amit; Erez Y. Levanon; Ninette Amariglio; Noam Stern-Ginossar; Noa Novershtern; Gideon Rechavi

mRNA modification regulates pluripotency When stem cells progress from an embryonic pluripotent state toward a particular lineage, molecular switches dismantle the transcription factor network that keeps the cell pluripotent. Geula et al. now show that N6-methyladenosine (m6A), a messenger RNA (mRNA) modification present on transcripts of pluripotency factors, drives this transition. Methylation destabilized mRNA transcripts and limited their translation efficiency, which promoted the timely decay of naïve pluripotency. This m6A methylation was also critical for mammalian development. Science, this issue p. 1002 A messenger RNA epigenetic modification regulates stem cell progression from the pluripotent to the differentiated state. Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m6A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner.


Nature | 2016

The dynamic N 1 -methyladenosine methylome in eukaryotic messenger RNA

Dan Dominissini; Sigrid Nachtergaele; Sharon Moshitch-Moshkovitz; Eyal Peer; Nitzan Kol; Moshe Shay Ben-Haim; Qing Dai; Ayelet Di Segni; Mali Salmon-Divon; Wesley C. Clark; Guanqun Zheng; Tao Pan; Oz Solomon; Eran Eyal; Vera Hershkovitz; Dali Han; Louis C. Doré; Ninette Amariglio; Gideon Rechavi; Chuan He

Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N6-methyladenosine (m6A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N1-methyladenosine (m1A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m1A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m1A in promoting translation of methylated mRNA.


Nature Methods | 2017

Nm-seq maps 2'-O-methylation sites in human mRNA with base precision.

Qing Dai; Sharon Moshitch-Moshkovitz; Dali Han; Nitzan Kol; Ninette Amariglio; Gideon Rechavi; Dan Dominissini; Chuan He

The ribose of RNA nucleotides can be 2′-O-methylated (Nm). Despite advances in high-throughput detection, the inert chemical nature of Nm still limits sensitivity and precludes mapping in mRNA. We leveraged the differential reactivity of 2′-O-methylated and 2′-hydroxylated nucleosides to periodate oxidation to develop Nm-seq, a sensitive method for transcriptome-wide mapping of Nm with base precision. Nm-seq uncovered thousands of Nm sites in human mRNA with features suggesting functional roles.


Clinical Genetics | 2017

Microcephaly, intractable seizures and developmental delay caused by biallelic variants in TBCD: Further delineation of a new chaperone-mediated tubulinopathy

Ben Pode-Shakked; Hila Barash; Limor Ziv; Karen W. Gripp; Elisabetta Flex; Ortal Barel; Karen S. Carvalho; Mena Scavina; Giovanni Chillemi; Marcello Niceta; Eran Eyal; Nitzan Kol; Bruria Ben-Zeev; O. Bar-Yosef; Dina Marek-Yagel; Enrico Bertini; Angela L. Duker; Yair Anikster; Marco Tartaglia; Annick Raas-Rothschild

Microtubule dynamics play a crucial role in neuronal development and function, and several neurodevelopmental disorders have been linked to mutations in genes encoding tubulins and functionally related proteins. Most recently, variants in the tubulin cofactor D (TBCD) gene, which encodes one of the five co‐chaperones required for assembly and disassembly of α/β‐tubulin heterodimer, were reported to underlie a recessive neurodevelopmental/neurodegenerative disorder. We report on five patients from three unrelated families, who presented with microcephaly, intellectual disability, intractable seizures, optic nerve pallor/atrophy, and cortical atrophy with delayed myelination and thinned corpus callosum on brain imaging. Exome sequencing allowed the identification of biallelic variants in TBCD segregating with the disease in the three families. TBCD protein level was significantly reduced in cultured fibroblasts from one patient, supporting defective TBCD function as the event underlying the disorder. Such reduced expression was associated with accelerated microtubule re‐polymerization. Morpholino‐mediated TBCD knockdown in zebrafish recapitulated several key pathological features of the human disease, and TBCD overexpression in the same model confirmed previous studies documenting an obligate dependency on proper TBCD levels during development. Our findings confirm the link between inactivating TBCD variants and this newly described chaperone‐associated tubulinopathy, and provide insights into the phenotype of this disorder.


Journal of Inherited Metabolic Disease | 2016

Expanding the molecular diversity and phenotypic spectrum of glycerol 3-phosphate dehydrogenase 1 deficiency

Carlo Dionisi-Vici; Eyal Shteyer; Marcello Niceta; Cristiano Rizzo; Ben Pode-Shakked; Giovanni Chillemi; Alessandro Bruselles; Michela Semeraro; Ortal Barel; Eran Eyal; Nitzan Kol; Yael Haberman; Avishai Lahad; Francesca Diomedi-Camassei; Dina Marek-Yagel; Gideon Rechavi; Marco Tartaglia; Yair Anikster

Transient infantile hypertriglyceridemia (HTGT1; OMIM #614480) is a rare autosomal recessive disorder, which manifests in early infancy with transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis. This rare clinical entity is caused by inactivating mutations in the GPD1 gene, which encodes the cytosolic isoform of glycerol-3-phosphate dehydrogenase. Here we report on four patients from three unrelated families of diverse ethnic origins, who presented with hepatomegaly, liver steatosis, hypertriglyceridemia, with or without fasting ketotic hypoglycemia. Whole exome sequencing revealed the affected individuals to harbor deleterious biallelic mutations in the GPD1 gene, including the previously undescribed c.806G > A (p.Arg269Gln) and c.640T > C (p.Cys214Arg) mutations. The clinical features in three of our patients showed several differences compared to the original reports. One subject presented with recurrent episodes of fasting hypoglycemia along with hepatomegaly, hypetriglyceridemia, and elevated liver enzymes; the second showed a severe liver disease, with intrahepatic cholestasis associated with kidney involvement; finally, the third presented persistent hypertriglyceridemia at the age of 30 years. These findings expand the current knowledge of this rare disorder, both with regard to the phenotype and molecular basis. The enlarged phenotypic spectrum of glycerol-3-phosphate dehydrogenase 1 deficiency can mimic other inborn errors of metabolism with liver involvement and should alert clinicians to recognize this entity by considering GPD1 mutations in appropriate clinical settings.


BMC Genomics | 2016

G23D: Online tool for mapping and visualization of genomic variants on 3D protein structures

Oz Solomon; Vered Kunik; Amos J. Simon; Nitzan Kol; Ortal Barel; Atar Lev; Ninette Amariglio; Raz Somech; Gidi Rechavi; Eran Eyal

BackgroundEvaluation of the possible implications of genomic variants is an increasingly important task in the current high throughput sequencing era. Structural information however is still not routinely exploited during this evaluation process. The main reasons can be attributed to the partial structural coverage of the human proteome and the lack of tools which conveniently convert genomic positions, which are the frequent output of genomic pipelines, to proteins and structure coordinates.ResultsWe present G23D, a tool for conversion of human genomic coordinates to protein coordinates and protein structures. G23D allows mapping of genomic positions/variants on evolutionary related (and not only identical) protein three dimensional (3D) structures as well as on theoretical models. By doing so it significantly extends the space of variants for which structural insight is feasible. To facilitate interpretation of the variant consequence, pathogenic variants, functional sites and polymorphism sites are displayed on protein sequence and structure diagrams alongside the input variants. G23D also provides modeling of the mutant structure, analysis of intra-protein contacts and instant access to functional predictions and predictions of thermo-stability changes. G23D is available at http://www.sheba-cancer.org.il/G23D.ConclusionsG23D extends the fraction of variants for which structural analysis is applicable and provides better and faster accessibility for structural data to biologists and geneticists who routinely work with genomic information.


Nature Communications | 2017

RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure

Oz Solomon; Ayelet Di Segni; Karen Cesarkas; Hagit T. Porath; Victoria Marcu-Malina; Orel Mizrahi; Noam Stern-Ginossar; Nitzan Kol; Sarit Farage-Barhom; Efrat Glick-Saar; Yaniv Lerenthal; Erez Y. Levanon; Ninette Amariglio; Ron Unger; Itamar Goldstein; Eran Eyal; Gidi Rechavi

Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.Adenosine deaminase acting on RNA 1 (ADAR1) edits adenosine to inosine. Here the authors, using parallel analysis of RNA secondary structure sequencing, provide evidence that ADAR1 induces sequence-context-dependent RNA secondary structures changes, often leading to stabilization of the RNA duplex.


Nature Methods | 2018

Corrigendum: Nm-seq maps 2′-O-methylation sites in human mRNA with base precision

Qing Dai; Sharon Moshitch-Moshkovitz; Dali Han; Nitzan Kol; Ninette Amariglio; Gideon Rechavi; Dan Dominissini; Chuan He

This corrects the article DOI: 10.1038/nmeth.4294


European Journal of Medical Genetics | 2018

Diaphanospondylodysostosis: Refining the prenatal diagnosis of a rare skeletal disorder

Lior Greenbaum; Yinon Gilboa; Annick Raas-Rothschild; Ortal Barel; Nitzan Kol; Haike Reznik-Wolf; Ben Pode-Shakked; Yael Finezilber; Baruch Messing; Michal Berkenstadt

Diaphanospondylodysostosis (DSD) is a rare autosomal recessive skeletal disorder, characterized mainly by ossification defects in vertebrae, thorax malformations, renal cystic dysplasia and usually death in the perinatal period. DSD is caused by mutations in the bone morphogenetic protein-binding endothelial regulator (BMPER) gene. We describe the prenatal findings of a non-consanguineous Jewish couple (shared Balkan origin), with three affected fetuses that presented with malformations in the spine and chest, reduced ossification of the skull and spine, horseshoe kidney and increased nuchal translucency. The unique combination of these ultrasound (US) features raised the possibility of DSD, which was confirmed by whole exome sequencing (WES) performed on a single fetal DNA and familial segregation. In the three fetuses, a novel homozygous mutation in BMPER (c.410T > A; p.Val137Asp) was found. This mutation, which segregated in the family, was not found in 65 controls of Jewish Balkan origin, and in several large databases. Taken together, the combination of a detailed prenatal US examination and WES may be highly effective in confirming the diagnosis of a rare genetic disease, in this case DSD.


European Journal of Paediatric Neurology | 2017

Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal infantile encephalopathy

Ortal Barel; May Christine V. Malicdan; Bruria Ben-Zeev; Judith Kandel; Hadass Pri-Chen; Joshi Stephen; Inês G. Castro; Jeremy Metz; Osama Atawa; Sharon Moshkovitz; Esther Ganelin; Iris Barshack; Sylvie Polak-Charcon; Dvora Nass; Dina Marek-Yagel; Ninette Amariglio; Nechama Shalva; Thierry Vilboux; Carlos R. Ferreira; Ben Pode-Shakked; Gali Heimer; Chen Hoffmann; Tal Yardeni; Andreea Nissenkorn; Camila Avivi; Eran Eyal; Nitzan Kol; Efrat Glick Saar; Douglas C. Wallace; William A. Gahl

Collaboration


Dive into the Nitzan Kol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ninette Amariglio

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gideon Rechavi

Tel Aviv Sourasky Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge