Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noa Ofen is active.

Publication


Featured researches published by Noa Ofen.


Nature Neuroscience | 2007

Development of the declarative memory system in the human brain

Noa Ofen; Yun Ching Kao; Peter Sokol-Hessner; Heesoo Kim; Susan Whitfield-Gabrieli; John D. E. Gabrieli

Brain regions that are involved in memory formation, particularly medial temporal lobe (MTL) structures and lateral prefrontal cortex (PFC), have been identified in adults, but not in children. We investigated the development of brain regions involved in memory formation in 49 children and adults (ages 8–24), who studied scenes during functional magnetic resonance imaging. Recognition memory for vividly recollected scenes improved with age. There was greater activation for subsequently remembered scenes than there was for forgotten scenes in MTL and PFC regions. These activations increased with age in specific PFC, but not in MTL, regions. PFC, but not MTL, activations correlated with developmental gains in memory for details of experiences. Voxel-based morphometry indicated that gray matter volume in PFC, but not in MTL, regions reduced with age. These results suggest that PFC regions that are important for the formation of detailed memories for experiences have a prolonged maturational trajectory.


Journal of Cognitive Neuroscience | 2014

Selective development of anticorrelated networks in the intrinsic functional organization of the human brain

Xiaoqian J. Chai; Noa Ofen; John D. E. Gabrieli; Susan Whitfield-Gabrieli

We examined the normal development of intrinsic functional connectivity of the default network (brain regions typically deactivated for attention-demanding tasks) as measured by resting-state fMRI in children, adolescents, and young adults ages 8–24 years. We investigated both positive and negative correlations and employed analysis methods that allowed for valid interpretation of negative correlations and that also minimized the influence of motion artifacts that are often confounds in developmental neuroimaging. As age increased, there were robust developmental increases in negative correlations, including those between medial pFC (MPFC) and dorsolateral pFC (DLPFC) and between lateral parietal cortices and brain regions associated with the dorsal attention network. Between multiple regions, these correlations reversed from being positive in children to negative in adults. Age-related changes in positive correlations within the default network were below statistical threshold after controlling for motion. Given evidence in adults that greater negative correlation between MPFC and DLPFC is associated with superior cognitive performance, the development of an intrinsic anticorrelation between MPFC and DLPFC may be a marker of the large growth of working memory and executive functions that occurs from childhood to young adulthood.


The Journal of Neuroscience | 2012

The development of brain systems associated with successful memory retrieval of scenes

Noa Ofen; Xiaoqian J. Chai; Karen D. I. Schuil; Susan Whitfield-Gabrieli; John D. E. Gabrieli

Neuroanatomical and psychological evidence suggests prolonged maturation of declarative memory systems in the human brain from childhood into young adulthood. Here, we examine functional brain development during successful memory retrieval of scenes in children, adolescents, and young adults ages 8–21 via functional magnetic resonance imaging. Recognition memory improved with age, specifically for accurate identification of studied scenes (hits). Successful retrieval (correct old–new decisions for studied vs unstudied scenes) was associated with activations in frontal, parietal, and medial temporal lobe (MTL) regions. Activations associated with successful retrieval increased with age in left parietal cortex (BA7), bilateral prefrontal, and bilateral caudate regions. In contrast, activations associated with successful retrieval did not change with age in the MTL. Psychophysiological interaction analysis revealed that there were, however, age-relate changes in differential connectivity for successful retrieval between MTL and prefrontal regions. These results suggest that neocortical regions related to attentional or strategic control show the greatest developmental changes for memory retrieval of scenes. Furthermore, these results suggest that functional interactions between MTL and prefrontal regions during memory retrieval also develop into young adulthood. The developmental increase of memory-related activations in frontal and parietal regions for retrieval of scenes and the absence of such an increase in MTL regions parallels what has been observed for memory encoding of scenes.


Neuroscience & Biobehavioral Reviews | 2012

The development of neural correlates for memory formation.

Noa Ofen

A growing body of literature considers the development of episodic memory systems in the brain; the majority are neuroimaging studies conducted during memory encoding in order to explore developmental trajectories in memory formation. This review considers evidence from behavioral studies of memory development, neural correlates of memory formation in adults, and structural brain development, all of which form the foundation of a developmental cognitive neuroscience approach to memory development. I then aim to integrate the current evidence from developmental functional neuroimaging studies of memory formation with respect to three hypotheses. First, memory development reflects the development in the use of memory strategies, linked to prefrontal cortex. Second, developmental effects within the medial temporal lobes are more complex, and correspond to current notions about the nature in which the MTL support the formation of memory. Third, neurocognitive changes in content representation influence memory. Open issues and current directions are discussed.


Hippocampus | 2016

Age differences in hippocampal subfield volumes from childhood to late adulthood

Ana M. Daugherty; Andrew R. Bender; Naftali Raz; Noa Ofen

The hippocampus is composed of distinct subfields: the four cornu ammonis areas (CA1‐CA4), dentate gyrus (DG), and subiculum. The few in vivo studies of human hippocampal subfields suggest that the extent of age differences in volume varies across subfields during healthy childhood development and aging. However, the associations between age and subfield volumes across the entire lifespan are unknown. Here, we used a high‐resolution imaging technique and manually measured hippocampal subfield and entorhinal cortex volumes in a healthy lifespan sample (Nu2009=u2009202), ages 8–82 yrs. The magnitude of age differences in volume varied among the regions. Combined CA1‐2 volume evidenced a negative linear association with age. In contrast, the associations between age and volumes of CA3‐DG and the entorhinal cortex were negative in mid‐childhood and attenuated in later adulthood. Volume of the subiculum was unrelated to age. The different magnitudes and patterns of age differences in subfield volumes may reflect dynamic microstructural factors and have implications for cognitive functions across the lifespan.


Frontiers in Human Neuroscience | 2010

Scene Complexity: Influence on Perception, Memory, and Development in the Medial Temporal Lobe

Xiaoqian J. Chai; Noa Ofen; Lucia F. Jacobs; John D. E. Gabrieli

Regions in the medial temporal lobe (MTL) and prefrontal cortex (PFC) are involved in memory formation for scenes in both children and adults. The development in children and adolescents of successful memory encoding for scenes has been associated with increased activation in PFC, but not MTL, regions. However, evidence suggests that a functional subregion of the MTL that supports scene perception, located in the parahippocampal gyrus (PHG), goes through a prolonged maturation process. Here we tested the hypothesis that maturation of scene perception supports the development of memory for complex scenes. Scenes were characterized by their levels of complexity defined by the number of unique object categories depicted in the scene. Recognition memory improved with age, in participants ages 8–24, for high-, but not low-, complexity scenes. High-complexity compared to low-complexity scenes activated a network of regions including the posterior PHG. The difference in activations for high- versus low-complexity scenes increased with age in the right posterior PHG. Finally, activations in right posterior PHG were associated with age-related increases in successful memory formation for high-, but not low-, complexity scenes. These results suggest that functional maturation of the right posterior PHG plays a critical role in the development of enduring long-term recollection for high-complexity scenes.


Frontiers in Human Neuroscience | 2010

The Influence of Rest Period Instructions on the Default Mode Network

Christopher Benjamin; Daniel A. Lieberman; Maria Chang; Noa Ofen; Susan Whitfield-Gabrieli; John D. E. Gabrieli; Nadine Gaab

The default mode network (DMN) refers to regional brain activity that is greater during rest periods than during attention-demanding tasks; many studies have reported DMN alterations in patient populations. It has also been shown that the DMN is suppressed by scanner background noise (SBN), which is the noise produced by functional magnetic resonance imaging (fMRI). However, it is unclear whether different approaches to “rest” in the noisy MR environment can alter the DMN and constitute a confound in studies investigating the DMN in particular patient populations (e.g., individuals with schizophrenia, Alzheimers disease). We examined 27 healthy adult volunteers who completed an fMRI experiment with three different instructions for rest: (1) relax and be still, (2) attend to SBN, or (3) ignore SBN. Region of interest analyses were performed to determine the influence of rest period instructions on core regions of the DMN and DMN regions previously reported to be altered in patients with or at risk for Alzheimers disease or schizophrenia. The dorsal medial prefrontal cortex (dmPFC) exhibited greater activity when specific resting instructions were given (i.e., attend to or ignore SBN) compared to when non-specific resting instructions were given. Condition-related differences in connectivity were also observed between regions of the dmPFC and inferior parietal/posterior superior temporal cortex. We conclude that rest period instructions and SBN levels should be carefully considered for fMRI studies on the DMN, especially studies on clinical populations and groups that may have different approaches to rest, such as first-time research participants and children.


Vision Research | 2007

Effects of trial repetition in texture discrimination.

Noa Ofen; Anan Moran; Dov Sagi

Performance on the texture discrimination task improves with practice but was also shown to decrease between closely spaced sessions. Here we explored immediate changes in performance within a single session. We found that, after an initial increase, performance declined with further training within a single session. This deterioration in performance was smaller when the inter-trial interval was longer than 3s. Performance recovered when targets were presented in new locations within the texture stimulus-thereby excluding a general fatigue process or adaptation to the stimulus light-intensity as an explanation for our findings. Further, the complete transfer of deterioration between eyes pointed to cortical origin. Deterioration was also found for task-irrelevant targets, indicating the involvement of a sensory mechanism. Collectively, these findings trace the deterioration of performance in the texture discrimination task, previously observed across several hours, to cortical events occurring during or immediately after stimulus presentation.


Neuroscience & Biobehavioral Reviews | 2013

From perception to memory: Changes in memory systems across the lifespan

Noa Ofen; Yee Lee Shing

Human memory is not a unitary entity; rather it is thought to arise out of a complex architecture involving interactions between distinct representational systems that specialize in perceptual, semantic, and episodic representations. Neuropsychological and neuroimaging evidence are combined in support of models of memory systems, however most models only capture a mature state of human memory and there is little attempt to incorporate evidence of the contribution of developmental and senescence changes in various processes involved in memory across the lifespan. Here we review behavioral and neuroimaging evidence for changes in memory functioning across the lifespan and propose specific principles that may be used to extend models of human memory across the lifespan. In contrast to a simplistic reduced version of the adult model, we suggest that the architecture and dynamics of memory systems become gradually differentiated during development and that a dynamic shift toward favoring semantic memory occurs during aging. Characterizing transformations in memory systems across the lifespan can illustrate and inform us about the plasticity of human memory systems.


Hippocampus | 2017

A harmonized segmentation protocol for hippocampal and parahippocampal subregions : why do we need one and what are the key goals?

Laura E.M. Wisse; Ana M. Daugherty; Rosanna K. Olsen; David Berron; Valerie A. Carr; Craig E.L. Stark; Robert S.C. Amaral; Katrin Amunts; Jean C. Augustinack; Andrew R. Bender; Jeffrey Bernstein; Marina Boccardi; Martina Bocchetta; Alison C. Burggren; M. Mallar Chakravarty; Marie Chupin; Arne D. Ekstrom; Robin de Flores; Ricardo Insausti; Prabesh Kanel; Olga Kedo; Kristen M. Kennedy; Geoffrey A. Kerchner; Karen F. LaRocque; Xiuwen Liu; Anne Maass; Nicolai Malykhin; Susanne G. Mueller; Noa Ofen; Daniela J. Palombo

The advent of high‐resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high‐resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies.

Collaboration


Dive into the Noa Ofen's collaboration.

Top Co-Authors

Avatar

John D. E. Gabrieli

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Susan Whitfield-Gabrieli

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Xiaoqian J. Chai

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qijing Yu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eishi Asano

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge