Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noam Jacob is active.

Publication


Featured researches published by Noam Jacob.


Journal of Immunology | 2009

Deficiency of Type I IFN Receptor in Lupus-Prone New Zealand Mixed 2328 Mice Decreases Dendritic Cell Numbers and Activation and Protects from Disease

Hemant Agrawal; Noam Jacob; Esther Carreras; Sandra Bajaña; Chaim Putterman; Sean Turner; Barbara R. Neas; Alexis Mathian; Michael Koss; William Stohl; Susan Kovats; Chaim O. Jacob

Type I IFNs are potent regulators of innate and adaptive immunity and are implicated in the pathogenesis of systemic lupus erythematosus. Here we report that clinical and pathological lupus nephritis and serum anti-nuclear Ab levels are greatly attenuated in New Zealand Mixed (NZM) 2328 mice deficient in type I IFN receptors (IFNAR). To determine whether the inflammatory environment in NZM 2328 mice leads to IFNAR-regulated changes in dendritic cells (DC), the number, activation, and function of DC subsets were compared in 2- and 5-mo-old (clinically healthy) female NZM and NZM-IFNAR−/− mice. Numbers of activated CD40high plasmacytoid DC (pDC) were significantly increased in renal lymph nodes of 2-mo-old NZM but not NZM-IFNAR−/− mice, suggesting an early IFNAR-dependent expansion and activation of pDC at disease sites. Relative to NZM spleens, NZM-IFNAR−/− spleens in 5-mo-old mice were significantly decreased in size and contained reduced numbers of conventional DC subsets, but not pDC. Splenic and renal lymph node NZM-IFNAR−/− DC analyzed directly ex vivo expressed significantly less CD40, CD86, and PDL1 than did NZM DC. Upon activation with synthetic TLR9 ligands in vitro, splenic NZM-IFNAR−/− DC produced less IL-12p40/70 and TNF-α than did NZM DC. The limited IFNAR−/− DC response to endogenous activating stimuli correlated with reduced numbers of splenic activated memory CD4+ T cells and CD19+ B cells in older mice. Thus, IFNAR signaling significantly increases DC numbers, acquisition of Ag presentation competence, and proinflammatory function before onset of clinically apparent lupus disease.


Journal of Immunology | 2011

Antibody-Mediated Coengagement of FcγRIIb and B Cell Receptor Complex Suppresses Humoral Immunity in Systemic Lupus Erythematosus

Holly M. Horton; Seung Y. Chu; Elizabeth C. Ortiz; Erik Pong; Saso Cemerski; Irene W.L. Leung; Noam Jacob; Jonathan Zalevsky; John R. Desjarlais; William Stohl; David Edmund Szymkowski

Engagement of the low-affinity Ab receptor FcγRIIb downregulates B cell activation, and its dysfunction is associated with autoimmunity in mice and humans. We engineered the Fc domain of an anti-human CD19 Ab to bind FcγRIIb with high affinity, promoting the coengagement of FcγRIIb with the BCR complex. This Ab (XmAb5871) stimulated phosphorylation of the ITIM of FcγRIIb and suppressed BCR-induced calcium mobilization, proliferation, and costimulatory molecule expression of human B cells from healthy volunteers and systemic lupus erythematosus (SLE) patients, as well as B cell proliferation induced by LPS, IL-4, or BAFF. XmAb5871 suppressed humoral immunity against tetanus toxoid and reduced serum IgM, IgG, and IgE levels in SCID mice engrafted with SLE or healthy human PBMC. XmAb5871 treatment also increased survival of mice engrafted with PBMC from a unique SLE patient. Unlike anti-CD20 Ab, coengagement of FcγRIIb and BCR complex did not promote B cell depletion in human PBMC cultures or in mice. Thus, amplification of the FcγRIIb inhibitory pathway in activated B cells may represent a novel B cell-targeted immunosuppressive therapeutic approach for SLE and other autoimmune diseases that should avoid the complications associated with B cell depletion.


Arthritis Research & Therapy | 2011

Cytokine disturbances in systemic lupus erythematosus

Noam Jacob; William Stohl

The pathogenesis of systemic lupus erythematosus (SLE) is complex, and the resulting disease manifestations are heterogeneous. Cytokine dysregulation is pervasive, and their protein and gene expression profiles may serve as markers of disease activity and severity. Importantly, biologic agents that target specific cytokines may represent novel therapies for SLE. Four cytokines (IL-6, TNFα, IFNα, and BLyS) are being evaluated as therapeutic targets in SLE. The present review will examine the roles of each of these cytokines in murine and human SLE, and will summarize results from clinical trials of agents that target these cytokines.


Journal of Immunology | 2009

Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway.

Noam Jacob; Hai-Tao Yang; Luminita Pricop; Yi Liu; Xiaoni Gao; Song Guo Zheng; Juhua Wang; Hua Xin Gao; Chaim Putterman; Michael Koss; William Stohl; Chaim O. Jacob

TNF-α has both proinflammatory and immunoregulatory functions. Whereas a protective role for TNF administration in systemic lupus erythematosus (SLE)-prone (New Zealand Black × New Zealand White)F1 mice has been established, it remains uncertain whether this effect segregates at the individual TNFR. We generated SLE-prone New Zealand Mixed 2328 mice genetically deficient in TNFR1, in TNFR2, or in both receptors. Doubly-deficient mice developed accelerated pathological and clinical nephritis with elevated levels of circulating IgG anti-dsDNA autoantibodies and increased numbers of CD4+ T lymphocytes, especially activated memory (CD44highCD62Llow) CD4+ T cells. We show that these cells expressed a Th17 gene profile, were positive for IL-17 intracellular staining by FACS, and produced exogenous IL-17 in culture. In contrast, immunological, pathological, and clinical profiles of mice deficient in either TNFR alone did not differ from those in each other or from those in wild-type controls. Thus, total ablation of TNF-α-mediated signaling was highly deleterious to the host in the New Zealand Mixed 2328 SLE model. These observations may have profound ramifications for the use of TNF and TNFR antagonists in human SLE and related autoimmune disorders, as well as demonstrate, for the first time, the association of the Th17 pathway with an animal model of SLE.


Autoimmunity | 2010

Autoantibody-dependent and autoantibody-independent roles for B cells in systemic lupus erythematosus: past, present, and future

Noam Jacob; William Stohl

It has long been known that B cells produce autoantibodies and, thereby, contribute to the pathogenesis of many autoimmune diseases. Systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disorder, is characterized by high-circulating autoantibody titers and immune-complex deposition that can trigger inflammatory damage in multiple organs/organ systems. Although the interest in B cells in SLE has historically focused on their autoantibody production, we now appreciate that B cells have multiple autoantibody-independent roles in SLE as well. B cells can efficiently present antigen and activate T cells, they can augment T cell activation through co-stimulatory interactions, and they can produce numerous cytokines which affect inflammation, lymphogenesis, and immune regulation. Not surprisingly, B cells have become attractive therapeutic targets in SLE. With these points in mind, this review will focus on the autoantibody-dependent and autoantibody-independent roles for B cells in SLE and on therapeutic approaches that target B cells.


Journal of Immunology | 2011

B Cell and BAFF Dependence of IFN-α–Exaggerated Disease in Systemic Lupus Erythematosus-Prone NZM 2328 Mice

Noam Jacob; Shunhua Guo; Alexis Mathian; Michael Koss; Simona Gindea; Chaim Putterman; Chaim O. Jacob; William Stohl

IFN-α is a potent activator of innate and adaptive immunity, and its administration to preautoimmune (NZB×NZW)F1 mice promotes virulent systemic lupus erythematosus (SLE) disease. Given the known contributions of B cells and BAFF to SLE, we evaluated the ability of IFN-α administration to induce disease in wild-type (WT), B cell-deficient, and BAFF-deficient NZM 2328 mice. Whereas WT mice rapidly developed proliferative glomerulonephritis, marked proteinuria, and increased mortality in response to IFN-α administration, B cell-deficient mice developed neither renal pathology nor clinical disease. Moreover, BAFF-deficient mice, despite developing limited glomerular IgG and C3 deposition, also remained free of histological glomerulonephritis and clinical disease. Strikingly, similar T cell expansion and serum IgG responses were observed in adenovirus (Adv)-IFN–treated WT and BAFF-deficient mice despite their disparate pathological and clinical responses, whereas numbers of activated B cells increased in WT mice but not in BAFF-deficient mice. Nonetheless, B cell, plasma cell, and T cell infiltration of the kidneys in Adv-IFN–treated WT mice was similar to that in WT mice treated with Adv-control. Its ability to promote SLE disease in WT mice notwithstanding, IFN-α administration failed to drive the preferential expansion of CD4+ memory T cells that occurs during the natural course of disease, and glomerular infiltration of macrophages failed to associate with development of disease. These results collectively suggest that therapeutic targeting in SLE of BAFF and/or B cells in SLE could be successful even in states of IFN-α overexpression. Moreover, our results document important biological differences between IFN-α–driven and spontaneous natural SLE disease.


Arthritis & Rheumatism | 2012

Dispensability of APRIL to the development of systemic lupus erythematosus in NZM 2328 mice

Chaim O. Jacob; Shunhua Guo; Noam Jacob; Rahul D. Pawar; Chaim Putterman; William J. Quinn; Michael P. Cancro; Thi Sau Migone; William Stohl

OBJECTIVE To determine the role of APRIL in the development of systemic lupus erythematosus (SLE) in mice. METHODS Wild-type (WT) NZM 2328, NZM. April(-/-) , NZM.Baff(-/-) , and NZM.Baff(-/-) .April(-/-) mice were evaluated for lymphocyte phenotype by flow cytometry, for serum total IgG and IgG autoantibody levels by enzyme-linked immunosorbent assay, for glomerular deposition of IgG and C3 by immunofluorescence, for renal changes by histopathology, and for clinical disease by laboratory assessment (severe proteinuria). RESULTS In comparison to WT mice, NZM.April(-/-) mice harbored increased spleen B cells, T cells, and plasma cells (PCs), increased serum levels of IgG antichromatin antibodies, and decreased numbers of bone marrow (BM) PCs. Glomerular deposition of IgG and C3 was similar in NZM.April(-/-) mice and WT mice, renal changes on histopathology tended to be more severe in NZM.April(-/-) mice than in WT mice, and development of clinical disease was identical in NZM.April(-/-) mice and WT mice. BM (but not spleen) PCs and serum IgG antichromatin and anti-double-stranded DNA antibody levels were lower in NZM.Baff(-/-) .April(-/-) mice than in NZM.Baff(-/-) mice, whereas renal immunopathology in each cohort was equally mild. CONCLUSION APRIL is dispensable for the development of full-blown SLE in NZM mice. Moreover, the elimination of both APRIL and BAFF had no discernible effect on the development of renal immunopathology or clinical disease beyond that of elimination of BAFF alone. The reduction in BM PCs in hosts doubly deficient in APRIL and BAFF beyond that in hosts deficient only in BAFF raises concern that combined antagonism of APRIL and BAFF may lead to greater immunosuppression without a concomitant increase in therapeutic efficacy.


Arthritis & Rheumatism | 2013

Development of Systemic Lupus Erythematosus in NZM 2328 Mice in the Absence of any Single BAFF Receptor

Chaim O. Jacob; Ning Yu; Shunhua Guo; Noam Jacob; William J. Quinn; Vishal J. Sindhava; Michael P. Cancro; Beatrice Goilav; Chaim Putterman; Thi Sau Migone; William Stohl

OBJECTIVE To determine the necessity for any individual BAFF receptor in the development of systemic lupus erythematosus (SLE). METHODS Bcma-, Taci-, and Br3-null mutations were introgressed into NZM 2328 mice. NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice were evaluated for lymphocyte phenotype and BAFF receptor expression by flow cytometry; for B cell responsiveness to BAFF by in vitro culture; for serum levels of BAFF and total IgG and IgG anti-double-stranded DNA (anti-dsDNA) by enzyme-linked immunosorbent assay; for renal immunopathology by immunofluorescence and histopathology; and for clinical disease. RESULTS BCMA, TACI, and B lymphocyte stimulator receptor 3 (BR3) were not surface-expressed in NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice, respectively. Transitional and follicular B cells from NZM.Br3-/- mice were much less responsive to BAFF than were the corresponding cells from wild-type, NZM.Bcma-/-, or NZM.Taci-/- mice. In comparison with wild-type mice, NZM.Bcma-/- and NZM.Taci-/- mice harbored an increased number of spleen B cells, T cells, and plasma cells, whereas serum levels of total IgG and IgG anti-dsDNA were similar to those in wild-type mice. Despite their paucity of B cells, NZM.Br3-/- mice had an increased number of T cells, and the numbers of plasma cells and levels of IgG anti-dsDNA were similar to those in wild-type mice. Serum levels of BAFF were increased in NZM.Taci-/- and NZM.Br3-/- mice but were decreased in NZM.Bcma-/- mice. Despite their phenotypic differences, NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice had renal immunopathology and clinical disease that were at least as severe as that in wild-type mice. CONCLUSION Any single BAFF receptor, including BR3, is dispensable for the development of SLE in NZM mice. Development of disease in NZM.Br3-/- mice demonstrates that BAFF-BCMA and/or BAFF-TACI interactions contribute to SLE, and that a profound, life-long reduction in the numbers of B cells does not guarantee protection against SLE.


Arthritis & Rheumatism | 2010

Constitutive overexpression of BAFF in autoimmune‐resistant mice drives only some aspects of systemic lupus erythematosus–like autoimmunity

William Stohl; Noam Jacob; Shunhua Guo; Laurence Morel

OBJECTIVE To determine whether overexpression of BAFF can promote systemic lupus erythematosus (SLE)-like autoimmunity in mice that are otherwise autoimmune-resistant. METHODS We used class II major histocompatibility complex (MHC)-deficient C57BL/6 (B6) mice as a model of resistance to SLE and Sles1-bearing B6 mice as a model of resistance to the autoantibody-promoting capacity of the Sle1 region. We generated BAFF-transgenic (Tg) counterparts to these respective mice and evaluated lymphocyte phenotype, serologic autoimmunity, renal immunopathology, and clinical disease in the BAFF-Tg and non-Tg mouse sets. RESULTS Although constitutive BAFF overexpression did not lead to B cell expansion in class II MHC-deficient B6 mice, it did lead to increased serum IgG autoantibody levels. Nevertheless, renal immunopathology was limited, and clinical disease did not develop. In B6 and B6.Sle1 mice, constitutive BAFF overexpression led to increased numbers of B cells and CD4+ memory cells, as well as increased serum IgG and IgA autoantibody levels. Renal immunopathology was modestly greater in BAFF-Tg mice than in their non-Tg counterparts, but again, clinical disease did not develop. Introduction of the Sles1 region into B6.Sle1.Baff mice abrogated the BAFF-driven increase in CD4+ memory cells and the Sle1-driven, but not the BAFF-driven, increase in serum IgG antichromatin levels. Renal immunopathology was substantially ameliorated. CONCLUSION Although constitutive BAFF overexpression in otherwise autoimmune-resistant mice led to humoral autoimmunity, meaningful renal immunopathology and clinical disease did not develop. This raises the possibility that BAFF overexpression, even when present, may not necessarily drive disease in some SLE patients. This may help explain the heterogeneity of the clinical response to BAFF antagonists in human SLE.


Rheumatic Diseases Clinics of North America | 2012

Genetics of rheumatoid arthritis: an impressionist perspective.

Noam Jacob; Chaim O. Jacob

Rheumatoid arthritis (RA) is the most common rheumatic disease. The genetic basis of RA is supported through the identification of more than 30 susceptibility genetic variants. Each of these genes individually makes only a slight contribution to the risk of disease. Moreover, there is significant disparity in the genetic variants associated with different RA subgroups and patient ethnicities, which emphasizes the intricate nature of the diseases pathogenesis, and the complexities involved in large-scale genetic studies. This review evaluates critically the recent literature on the genetic contribution to RA and assesses the methodology used to identify these risk alleles.

Collaboration


Dive into the Noam Jacob's collaboration.

Top Co-Authors

Avatar

William Stohl

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chaim O. Jacob

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chaim Putterman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shunhua Guo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Cancro

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

William J. Quinn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Gindea

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge