Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuhito Goda is active.

Publication


Featured researches published by Nobuhito Goda.


Cell Stem Cell | 2010

Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells

Keiyo Takubo; Nobuhito Goda; Wakako Yamada; Hirono Iriuchishima; Eiji Ikeda; Yoshiaki Kubota; Haruko Shima; Randall S. Johnson; Atsushi Hirao; Makoto Suematsu; Toshio Suda

Hematopoietic stem cells (HSCs) are sustained in a specific microenvironment known as the stem cell niche. Mammalian HSCs are kept quiescent in the endosteal niche, a hypoxic zone of the bone marrow (BM). In this study, we show that normal HSCs maintain intracellular hypoxia and stabilize hypoxia-inducible factor-1alpha (HIF-1alpha) protein. In HIF-1alpha-deficient mice, the HSCs lost their cell cycle quiescence and HSC numbers decreased during various stress settings including bone marrow transplantation, myelosuppression, or aging, in a p16(Ink4a)/p19(Arf)-dependent manner. Overstabilization of HIF-1alpha by biallelic loss of an E3 ubiquitin ligase for HIF-1alpha (VHL) induced cell cycle quiescence in HSCs and their progenitors but resulted in an impairment in transplantation capacity. In contrast, monoallelic loss of VHL induced cell cycle quiescence and improved BM engraftment during bone marrow transplantation. These data indicate that HSCs maintain cell cycle quiescence through the precise regulation of HIF-1alpha levels.


Molecular and Cellular Biology | 2003

Hypoxia-Inducible Factor 1α Is Essential for Cell Cycle Arrest during Hypoxia

Nobuhito Goda; Heather E. Ryan; Bahram Khadivi; Wayne McNulty; Robert C. Rickert; Randall S. Johnson

ABSTRACT A classical cellular response to hypoxia is a cessation of growth. Hypoxia-induced growth arrest differs in different cell types but is likely an essential aspect of the response to wounding and injury. An important component of the hypoxic response is the activation of the hypoxia-inducible factor 1 (HIF-1) transcription factor. Although this transcription factor is essential for adaptation to low oxygen levels, the mechanisms through which it influences cell cycle arrest, including the degree to which it cooperates with the tumor suppressor protein p53, remain poorly understood. To determine broadly relevant aspects of HIF-1 function in primary cell growth arrest, we examined two different primary differentiated cell types which contained a deletable allele of the oxygen-sensitive component of HIF-1, the HIF-1α gene product. The two cell types were murine embryonic fibroblasts and splenic B lymphocytes; to determine how the function of HIF-1α influenced p53, we also created double-knockout (HIF-1α null, p53 null) strains and cells. In both cell types, loss of HIF-1α abolished hypoxia-induced growth arrest and did this in a p53-independent fashion. Surprisingly, in all cases, cells lacking both p53 and HIF-1α genes have completely lost the ability to alter the cell cycle in response to hypoxia. In addition, we have found that the loss of HIF-1α causes an increased progression into S phase during hypoxia, rather than a growth arrest. We show that hypoxia causes a HIF-1α-dependent increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27; we also find that hypophosphorylation of retinoblastoma protein in hypoxia is HIF-1α dependent. These data demonstrate that the transcription factor HIF-1 is a major regulator of cell cycle arrest in primary cells during hypoxia.


Journal of Clinical Investigation | 1995

Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver.

Makoto Suematsu; Nobuhito Goda; Tsuyoshi Sano; Satoshi Kashiwagi; Tsuyoshi Egawa; Yuichi Shinoda; Yuzuru Ishimura

Heme oxygenase is a heme-oxidizing enzyme which generates biliverdin and carbon monoxide (CO). The present study was designed to elucidate whether CO endogenously produced by this enzyme serves as an active vasorelaxant in the hepatic microcirculation. Microvasculature of the isolated perfused rat liver was visualized by dual-color digital microfluorography to alternately monitor sinusoidal lining and fat-storing Ito cells. In the control liver, the CO flux in the venous effluent ranged at 0.7 nmol/min per gram of liver. Administration of a heme oxygenase inhibitor zinc protoporphyrin IX (1 microM) eliminated the baseline CO generation, and the vascular resistance exhibited a 30% elevation concurrent with discrete patterns of constriction in sinusoids and reduction of the sinusoidal perfusion velocity. The major sites of the constriction corresponded to local sinusoidal segments colocalized with Ito cell which were identified by imaging their vitamin A autofluorescence. The increase in the vascular resistance and sinusoidal constriction were attenuated significantly by adding CO (1 microM) or a cGMP analogue 8-bromo-cGMP (1 microM) in the perfusate. From these findings, we propose that CO can function as an endogenous modulator of hepatic sinusoidal perfusion through a relaxing mechanism involving Ito cells.


Journal of Clinical Investigation | 1998

Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation.

Nobuhito Goda; Kensuke Suzuki; Makoto Naito; Shinji Takeoka; Eishun Tsuchida; Yuzuru Ishimura; Takuya Tamatani; Makoto Suematsu

Carbon monoxide (CO) derived from heme oxygenase has recently been shown to play a role in controlling hepatobiliary function, but intrahepatic distribution of the enzyme is unknown. We examined distribution of two kinds of the heme oxygenase isoforms (HO-1 and HO-2) in rat liver immunohistochemically using monoclonal antibodies. The results showed that distribution of the two isoforms had distinct topographic patterns: HO-1, an inducible isoform, was observed only in Kupffer cells, while HO-2, a constitutive form, distributed to parenchymal cells, but not to Kupffer cells. Both isoforms were undetectable in hepatic stellate cells and sinusoidal endothelial cells. Of the two isoforms, HO-2 in the parenchymal cell rather than HO-1 in the Kupffer cell, appears to play a major role in regulation of microvascular tone. In the perfused liver, administration of HbO2, a CO-trapping reagent that can diffuse across the fenestrated endothelium into the space of Disse, elicited a marked sinusoidal constriction, while administration of a liposome-encapsulated Hb that cannot enter the space had no effect on the microvascular tone. These results suggest that CO evolved by HO-2 in the parenchymal cells, and, released to the extrasinusoidal space, served as the physiological relaxant for hepatic sinusoids.


Antioxidants & Redox Signaling | 2003

HIF-1 in Cell Cycle Regulation, Apoptosis, and Tumor Progression

Nobuhito Goda; Sara J. Dozier; Randall S. Johnson

Cells in a low oxygen, or hypoxic, microenvironment must have the ability to sense oxygen levels in the nucleus in order to maintain oxygen homeostasis by gene regulation. Hypoxia inducible factor-1 (HIF-1) serves as a molecular bridge between the sensation and utilization of oxygen, and thus functions as a key player in oxygen homeostasis. HIF-1 is a heterodimeric transcription factor and is composed of two subunits, the oxygen-sensitive HIF-1alpha and constitutively expressed HIF-1beta. HIF-1 regulates the expression of a broad range of genes that facilitate acclimation to low oxygen conditions by changes in protein levels in circulation, metabolism, and proliferation. Appropriate temporal and spatial activation of HIF-1 is crucial not only in developmental and physiological processes, characterized by programmed cellular proliferation, but also in pathophysiological conditions such as tumorigenesis, which exhibit unregulated cellular proliferation. However, many contradictory reports as to the role of HIF-1 in the regulation of cellular proliferation have been put forward in recent years. In this review, our first aim is to summarize the current knowledge of oxygen-dependent HIF-1 activation mechanisms based on its structure. Then we will describe the proposed mechanisms through which HIF-1 regulates cellular proliferation of different cell types, including tumor cells as well as non-transformed, nonimmortalized cells under normoxic and hypoxic conditions.


Journal of Biological Chemistry | 2002

Gene Transfection of H25A Mutant Heme Oxygenase-1 Protects Cells against Hydroperoxide-induced Cytotoxicity

Rio Hori; Misato Kashiba; Tomoko Toma; Akihiro Yachie; Nobuhito Goda; Nobuya Makino; Akinori Soejima; Toshihiko Nagasawa; Kimimasa Nakabayashi; Makoto Suematsu

Heme oxygenase (HO)-1 is a stress-inducible enzyme protecting cells against oxidative stress, and mechanisms have been considered to depend exclusively on its enzyme activity. This study aimed to examine if the protein lacking catalytic activities could also display such resistance against oxidative stress. Stable transfectants of rat wild type HO-1 cDNA (HO-1-U937) and those of its H25A mutant gene (mHO-1-U937) were established using human monoblastic lymphoma cell U937. HO-1-U937 and mHO-1-U937 used in the study exhibited similar levels of the protein expression, while only the former increased enzyme activities. HO-1- and mHO-1 U937 cells became more and less sensitive to H2O2than mock transfectants, respectively; such distinct susceptibility between the cells was ascribable to differences in the capacity to scavenge H2O2 through catalase and to execute iron-mediated oxidant propagation. On the other hand, both cell lines exhibited greater resistance to tert-butyl hydroperoxide than mock transfectants. The resistance of HO-1-U937 to hydroperoxides appeared to result from antioxidant properties of bilirubin, an HO-derived product, while that of mHO-1-U937 was ascribable to increased contents of catalase and glutathione. These results provided evidence that gene transfection of the activity-lacking mutant HO-1 protects cells against oxidative stress through multiple mechanisms involving up-regulation of catalase and glutathione contents.


Hepatology | 2009

Cystathionine β-synthase as a carbon monoxide–sensitive regulator of bile excretion†

Tsunehiro Shintani; Takuya Iwabuchi; Tomoyoshi Soga; Yuichiro Kato; Takehiro Yamamoto; Naoharu Takano; Takako Hishiki; Yuki Ueno; Satsuki Ikeda; Tadayuki Sakuragawa; Kazuo Ishikawa; Nobuhito Goda; Yuko Kitagawa; Mayumi Kajimura; Kenji Matsumoto; Makoto Suematsu

Carbon monoxide (CO) is a stress‐inducible gas generated by heme oxygenase (HO) eliciting adaptive responses against toxicants; however, mechanisms for its reception remain unknown. Serendipitous observation in metabolome analysis in CO‐overproducing livers suggested roles of cystathionine β‐synthase (CBS) that rate‐limits transsulfuration pathway and H2S generation, for the gas‐responsive receptor. Studies using recombinant CBS indicated that CO binds to the prosthetic heme, stabilizing 6‐coordinated CO‐Fe(II)‐histidine complex to block the activity, whereas nitric oxide (NO) forms 5‐coordinated structure without inhibiting it. The CO‐overproducing livers down‐regulated H2S to stimulate HCO3−‐dependent choleresis: these responses were attenuated by blocking HO or by donating H2S. Livers of heterozygous CBS knockout mice neither down‐regulated H2S nor exhibited the choleresis while overproducing CO. In the mouse model of estradiol‐induced cholestasis, CO overproduction by inducing HO‐1 significantly improved the bile output through stimulating HCO3− excretion; such a choleretic response did not occur in the knockout mice. Conclusion: Results collected from metabolome analyses suggested that CBS serves as a CO‐sensitive modulator of H2S to support biliary excretion, shedding light on a putative role of the enzyme for stress‐elicited adaptive response against bile‐dependent detoxification processes. (HEPATOLOGY 2009;49:141‐150.)


International Journal of Hematology | 2012

Hypoxia-inducible factors and their roles in energy metabolism

Nobuhito Goda; Mai Kanai

Over the course of evolution, aerobic organisms have developed sophisticated systems for responding to alterations in oxygen concentration, as oxygen acts as a final electron acceptor in oxidative phosphorylation for energy production. Hypoxia-inducible factor (HIF) plays a central role in the adaptive regulation of energy metabolism, by triggering a switch from mitochondrial oxidative phosphorylation to anaerobic glycolysis in hypoxic conditions. HIF also reduces oxygen consumption in mitochondria by inhibiting conversion of pyruvate to acetyl CoA, suppressing mitochondrial biogenesis and activating autophagy of mitochondria concomitantly with reduction in reactive oxygen species production. In addition, metabolic reprogramming in response to hypoxia through HIF activation is not limited to the regulation of carbohydrate metabolism; it occurs in lipid metabolism as well. Recent studies using in vivo gene-targeting technique have revealed unexpected, but novel functions of HIF in energy metabolism in a context- and cell type-specific manner, and shed light on the possibility of pharmaceutical targeting HIF as a new therapy against many diseases, including cancer, diabetes, and fatty liver.


Diabetologia | 2013

Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice

Shiho Fujisaka; Isao Usui; Masashi Ikutani; Aminuddin Aminuddin; Akiko Takikawa; Koichi Tsuneyama; Arshad Mahmood; Nobuhito Goda; Yoshinori Nagai; Kiyoshi Takatsu; Kazuyuki Tobe

Aims/hypothesisAs obesity progresses, adipose tissue exhibits a hypoxic and inflammatory phenotype characterised by the infiltration of adipose tissue macrophages (ATMs). In this study, we examined how adipose tissue hypoxia is involved in the induction of the inflammatory M1 and anti-inflammatory M2 polarities of ATMs.MethodsThe hypoxic characteristics of ATMs were evaluated using flow cytometry after the injection of pimonidazole, a hypoxia probe, in normal-chow-fed or high-fat-fed mice. The expression of hypoxia-related and inflammation-related genes was then examined in M1/M2 ATMs and cultured macrophages.ResultsPimonidazole uptake was greater in M1 ATMs than in M2 ATMs. This uptake was paralleled by the levels of inflammatory cytokines, such as TNF-α, IL-6 and IL-1β. The expression level of hypoxia-related genes, as well as inflammation-related genes, was also higher in M1 ATMs than in M2 ATMs. The expression of Il6, Il1β and Nos2 in cultured macrophages was increased by exposure to hypoxia in vitro but was markedly decreased by the gene deletion of Hif1a. In contrast, the expression of Tnf, another inflammatory cytokine gene, was neither increased by exposure to hypoxia nor affected by Hif1a deficiency. These results suggest that hypoxia induces the inflammatory phenotypes of macrophages via Hif1a-dependent and -independent mechanisms. On the other hand, the expression of inflammatory genes in cultured M2 macrophages treated with IL-4 responded poorly to hypoxia.Conclusions/interpretationAdipose tissue hypoxia induces an inflammatory phenotype via Hif1a-dependent and Hif1a-independent mechanisms in M1 ATMs but not in M2 ATMs.


Circulation Research | 2005

Carbon Monoxide From Heme Oxygenase-2 Is a Tonic Regulator Against NO-Dependent Vasodilatation in the Adult Rat Cerebral Microcirculation

Mami Ishikawa; Mayumi Kajimura; Takeshi Adachi; Kayo Maruyama; Nobuya Makino; Nobuhito Goda; Tokio Yamaguchi; Eiichi Sekizuka; Makoto Suematsu

Although the brain generates NO and carbon monoxide (CO), it is unknown how these gases and their enzyme systems interact with each other to regulate cerebrovascular function. We examined whether CO produced by heme oxygenase (HO) modulates generation and action of constitutive NO in the rat pial microcirculation. Immunohistochemical analyses indicated that HO-2 occurred in neurons and arachnoid trabecular cells, where NO synthase 1 (NOS1) was detectable, and also in vascular endothelium–expressing NOS3, suggesting colocalization of CO- and NO-generating sites. Intravital microscopy using a closed cranial window preparation revealed that blockade of the HO activity by zinc protoporphyrin IX significantly dilates arterioles. This vasodilatation depended on local NOS activities and was abolished by CO supplementation, suggesting that the gas derived from HO-2 tonically regulates NO-mediated vasodilatory response. Bioimaging of NO by laser-confocal microfluorography of diaminofluorescein indicated detectable amounts of NO at the microvascular wall, the subdural mesothelial cells, and arachnoid trabecular cells, which express NOS in and around the pial microvasculature. On CO inhibition by the HO inhibitor, regional NO formation was augmented in these cells. Such a pattern of accelerated NO formation depended on NOS activities and was again attenuated by the local CO supplementation. Studies using cultured porcine aortic endothelial cells suggested that the inhibitory action of CO on NOS could result from the photo-reversible gas binding to the prosthetic heme. Collectively, CO derived from HO-2 appears to serve as a tonic vasoregulator antagonizing NO-mediated vasodilatation in the rat cerebral microcirculation.

Collaboration


Dive into the Nobuhito Goda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge