Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobukazu Miyamoto is active.

Publication


Featured researches published by Nobukazu Miyamoto.


Journal of Cerebral Blood Flow and Metabolism | 2011

Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia

Shinichiro Teramoto; Nobukazu Miyamoto; Kenji Yatomi; Yasutaka Tanaka; Hidenori Oishi; Hajime Arai; Nobutaka Hattori; Takao Urabe

Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia–reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke.


Journal of Clinical Investigation | 2013

Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury

Ji Hae Seo; Nobukazu Miyamoto; Kazuhide Hayakawa; Loc-Duyen D. Pham; Takakuni Maki; Cenk Ayata; Kyu-Won Kim; Eng H. Lo; Ken Arai

Oligodendrocyte precursor cells (OPCs) are thought to maintain homeostasis and contribute to long-term repair in adult white matter; however, their roles in the acute phase after brain injury remain unclear. Mice that were subjected to prolonged cerebral hypoperfusion stress developed white matter demyelination over time. Prior to demyelination, we detected increased MMP9 expression, blood-brain barrier (BBB) leakage, and neutrophil infiltration in damaged white matter. Notably, at this early stage, OPCs made up the majority of MMP9-expressing cells. The standard MMP inhibitor GM6001 reduced the early BBB leakage and neutrophil infiltration, indicating that OPC-derived MMP9 induced early BBB disruption after white matter injury. Cell-culture experiments confirmed that OPCs secreted MMP9 under pathological conditions, and conditioned medium prepared from the stressed OPCs weakened endothelial barrier tightness in vitro. Our study reveals that OPCs can rapidly respond to white matter injury and produce MMP9 that disrupts the BBB, indicating that OPCs may mediate injury in white matter under disease conditions.


The Journal of Neuroscience | 2015

Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor

Nobukazu Miyamoto; Takakuni Maki; Akihiro Shindo; Anna C. Liang; Mitsuyo Maeda; Naohiro Egawa; Kanako Itoh; Evan K. Lo; Josephine Lok; Masafumi Ihara; Ken Arai

Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAPcre/BDNFwt/fl) in which BDNF expression is downregulated specifically in GFAP+ astrocytes. Both wild-type (GFAPwt/BDNFwt/fl mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However, the underlying mechanisms are still mostly unknown. Here, we use a combination of cell biology and an animal model to report a new pathway in which astrocyte-derived BDNF supports oligodendrogenesis and regeneration after white matter damage. These findings provide new mechanistic insight into white matter physiology and pathophysiology, which would be broadly and clinically applicable to CNS disease.


Stroke | 2013

Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice.

Nobukazu Miyamoto; Takakuni Maki; Loc-Duyen D. Pham; Kazuhide Hayakawa; Ji Hae Seo; Emiri T. Mandeville; Joseph B. Mandeville; Kyu-Won Kim; Eng H. Lo; Ken Arai

Background and Purpose— White matter injury caused by cerebral hypoperfusion may contribute to the pathophysiology of vascular dementia and stroke, but the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that oxidative stress interferes with endogenous white matter repair by disrupting renewal processes mediated by oligodendrocyte precursor cells (OPCs). Methods— In vitro, primary rat OPCs were exposed to sublethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Then, OPC proliferation/differentiation was assessed. In vivo, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. Then, reactive oxygen species production, myelin density, oligodendrocyte versus OPC counts, and cognitive function were evaluated. To block oxidative stress, OPCs and mice were treated with the radical scavenger edaravone. Results— Prolonged chemical hypoxic stress suppressed OPC differentiation in vitro. Radical scavenging with edaravone ameliorated these effects. After 28 days of cerebral hypoperfusion in vivo, reactive oxygen species levels were increased in damaged white matter, along with the suppression of OPC-to-oligodendrocyte differentiation and loss of myelin staining. Concomitantly, mice showed functional deficits in working memory. Radical scavenging with edaravone rescued OPC differentiation, ameliorated myelin loss, and restored working memory function. Conclusions— Our proof-of-concept study demonstrates that after prolonged cerebral hypoperfusion, oxidative stress interferes with white matter repair by disrupting OPC renewal mechanisms. Radical scavengers may provide a potential therapeutic approach for white matter injury in vascular dementia and stroke.


Journal of Cerebral Blood Flow and Metabolism | 2010

Phosphodiesterase III inhibition promotes differentiation and survival of oligodendrocyte progenitors and enhances regeneration of ischemic white matter lesions in the adult mammalian brain

Nobukazu Miyamoto; Ryota Tanaka; Hideki Shimura; Terubumi Watanabe; Mori H; Masafumi Onodera; Hideki Mochizuki; Nobutaka Hattori; Takao Urabe

Vascular dementia is caused by blockage of blood supply to the brain, which causes ischemia and subsequent lesions primarily in the white matter, a key characteristic of the disease. In this study, we used a chronic cerebral hypoperfusion rat model to show that the regeneration of white matter damaged by hypoperfusion is enhanced by inhibiting phosphodiesterase III. A rat model of chronic cerebral hypoperfusion was prepared by bilateral common carotid artery ligation. Performance at the Morris water-maze task, immunohistochemistry for bromodeoxyuridine, as well as serial neuronal and glial markers were analyzed until 28 days after hypoperfusion. There was a significant increase in the number of oligodendrocyte progenitor cells in the brains of patients with vascular dementia as well as in rats with cerebral hypoperfusion. The oligodendrocyte progenitor cells subsequently underwent cell death and the number of oligodendrocytes decreased. In the rat model, treatment with a phosphodiesterase III inhibitor prevented cell death, markedly increased the mature oligodendrocytes, and promoted restoration of white matter and recovery of cognitive decline. These effects were cancelled by using protein kinase A/C inhibitor in the phosphodiesterase III inhibitor group. The results of our study indicate that the mammalian brain white matter tissue has the capacity to regenerate after ischemic injury.


Neuroscience | 2009

Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model

Yuji Ueno; Ning Zhang; Nobukazu Miyamoto; Ryota Tanaka; Nobutaka Hattori; Takao Urabe

A multicenter randomized clinical trial demonstrated that acute ischemic stroke patients treated with edaravone, a scavenger of hydroxyl radicals, had significant functional improvement. We tested the hypothesis that edaravone has protective effects against white matter lesions (WML) and endothelial injury, using a rat chronic hypoperfusion model. Adult Wistar rats underwent ligation of bilateral common carotid artery (LBCCA) and were divided into the edaravone group (injected once only immediately after LBCCA [n=39, ED(1)]; and injected on three consecutive days [n=39, ED(3)]), the vehicle group (n=39), and the sham group (n=15). Cerebral blood flow, Morris water maze performance, footprint test for locomotor function, immunohistochemical analyses and Western blot analysis were performed before and after LBCCA. The ED(3) group upregulated endothelial nitric oxide synthase and attenuated Evans Blue extravasation at day 3 after LBCCA (P<0.05). Edaravone markedly suppressed accumulation of 4-hydroxy-2-nonenal-modified protein and 8-hydroxy-deoxyguanosine (P<0.01), and loss of oligodendrocytes (P<0.05) in the cerebral white matter at days 3, 7, 14, 21 and 28 after LBCCA. These results were more evident in the ED(3) group. Moreover, at day 21 after LBCCA, spatial memory but not motor function, and axonal damage were significantly improved by three-time treatment of edaravone (P<0.05). Our results indicated that 3-day treatment with edaravone provides protection against WML through endothelial protection and free radical scavenging and suggested that edaravone is potentially useful for the treatment of cognitive impairment.


PLOS ONE | 2014

Oligodendrocyte Precursor Cells Support Blood-Brain Barrier Integrity via TGF-β Signaling

Ji Hae Seo; Takakuni Maki; Mitsuyo Maeda; Nobukazu Miyamoto; Anna C. Liang; Kazuhide Hayakawa; Loc-Duyen D. Pham; Fumihiko Suwa; Akihiko Taguchi; Tomohiro Matsuyama; Masafumi Ihara; Kyu-Won Kim; Eng H. Lo; Ken Arai

Trophic coupling between cerebral endothelium and their neighboring cells is required for the development and maintenance of blood-brain barrier (BBB) function. Here we report that oligodendrocyte precursor cells (OPCs) secrete soluble factor TGF-β1 to support BBB integrity. Firstly, we prepared conditioned media from OPC cultures and added them to cerebral endothelial cultures. Our pharmacological experiments showed that OPC-conditioned media increased expressions of tight-junction proteins and decreased in vitro BBB permeability by activating TGB-β-receptor-MEK/ERK signaling pathway. Secondly, our immuno-electron microscopic observation revealed that in neonatal mouse brains, OPCs attach to cerebral endothelial cells via basal lamina. And finally, we developed a novel transgenic mouse line that TGF-β1 is knocked down specifically in OPCs. Neonates of these OPC-specific TGF-β1 deficient mice (OPC-specific TGF-β1 partial KO mice: PdgfraCre/Tgfb1flox/wt mice or OPC-specific TGF-β1 total KO mice: PdgfraCre/Tgfb1flox/flox mice) exhibited cerebral hemorrhage and loss of BBB function. Taken together, our current study demonstrates that OPCs increase BBB tightness by upregulating tight junction proteins via TGF-β signaling. Although astrocytes and pericytes are well-known regulators of BBB maturation and maintenance, these findings indicate that OPCs also play a pivotal role in promoting BBB integrity.


Stroke | 2013

Age-Related Decline in Oligodendrogenesis Retards White Matter Repair in Mice

Nobukazu Miyamoto; Loc-Duyen D. Pham; Kazuhide Hayakawa; Toshinori Matsuzaki; Ji Hae Seo; Caroline Magnain; Cenk Ayata; Kyu-Won Kim; David A. Boas; Eng H. Lo; Ken Arai

Background and Purpose— Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. Methods— A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Results— Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. Conclusions— An age-related decline in cyclic AMP response element-binding protein–mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.


Frontiers in Cellular Neuroscience | 2013

Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

Takakuni Maki; Anna C. Liang; Nobukazu Miyamoto; Eng H. Lo; Ken Arai

White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders.


Stroke | 2009

Prevalence of Abnormal Glucose Metabolism and Insulin Resistance Among Subtypes of Ischemic Stroke in Japanese Patients

Takao Urabe; Hirotaka Watada; Yasuyuki Okuma; Ryota Tanaka; Yuji Ueno; Nobukazu Miyamoto; Yasutaka Tanaka; Nobutaka Hattori; Ryuzo Kawamori

Background and Purpose— The purpose was to assess the prevalence of disorders of glucose metabolism and insulin resistance in Japanese ischemic stroke patients with no history of diabetes by performing 75-gram oral glucose tolerance test (OGTT). Methods— We recruited 427 ischemic stroke patients (atherothrombotic infarction, n=220; lacunar infarction, n=125; cardioembolic infarction, n=82). OGTT was used to evaluate disorders of glucose metabolism in stroke patients without previously known diabetes (n=113). We investigated the relationships among the prevalence of abnormal glucose metabolism, ischemic stroke subtypes, and the prevalence of insulin resistance using homeostasis model assessment for insulin resistance and immunoreactive insulin at 120 minutes after glucose loading (IRI120). Results— OGTT identified the presence of disorders of glucose metabolism in 62.8% of ischemic stroke patients without previously known diabetes, including diabetes (24.8%) and impaired glucose tolerance (lone impaired glucose tolerance and impaired fasting glucose plus impaired glucose tolerance, 34.5%). The prevalence of newly diagnosed diabetes and impaired glucose tolerance was the highest in the atherothrombotic infarction group (68.9%). The highest values of homeostasis model assessment for insulin resistance and immunoreactive insulin at 120 minutes after glucose loading were found in atherothrombotic infarction patients with abnormal glucose tolerance. Conclusions— In this study, a significantly large percentage of Japanese patients with ischemic stroke and no history of diabetes were found to have disorders of glucose metabolism by OGTT. Impaired glucose tolerance and insulin resistance could play an important pathogenic role in the development of atherothrombotic infarction.

Collaboration


Dive into the Nobukazu Miyamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge