Nobutada Kimura
National Institute of Advanced Industrial Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nobutada Kimura.
Applied and Environmental Microbiology | 2006
Hiroyuki Imachi; Yuji Sekiguchi; Yoichi Kamagata; Alexander Loy; Yan-Ling Qiu; Philip Hugenholtz; Nobutada Kimura; Michael Wagner; Akiyoshi Ohashi; Hideki Harada
ABSTRACT The classical perception of members of the gram-positive Desulfotomaculum cluster I as sulfate-reducing bacteria was recently challenged by the isolation of new representatives lacking the ability for anaerobic sulfate respiration. For example, the two described syntrophic propionate-oxidizing species of the genus Pelotomaculum form the novel Desulfotomaculum subcluster Ih. In the present study, we applied a polyphasic approach by using cultivation-independent and culturing techniques in order to further characterize the occurrence, abundance, and physiological properties of subcluster Ih bacteria in low-sulfate, methanogenic environments. 16S rRNA (gene)-based cloning, quantitative fluorescence in situ hybridization, and real-time PCR analyses showed that the subcluster Ih population composed a considerable part of the Desulfotomaculum cluster I community in almost all samples examined. Additionally, five propionate-degrading syntrophic enrichments of subcluster Ih bacteria were successfully established, from one of which the new strain MGP was isolated in coculture with a hydrogenotrophic methanogen. None of the cultures analyzed, including previously described Pelotomaculum species and strain MGP, consumed sulfite, sulfate, or organosulfonates. In accordance with these phenotypic observations, a PCR-based screening for dsrAB (key genes of the sulfate respiration pathway encoding the alpha and beta subunits of the dissimilatory sulfite reductase) of all enrichments/(co)cultures was negative with one exception. Surprisingly, strain MGP contained dsrAB, which were transcribed in the presence and absence of sulfate. Based on these and previous findings, we hypothesize that members of Desulfotomaculum subcluster Ih have recently adopted a syntrophic lifestyle to thrive in low-sulfate, methanogenic environments and thus have lost their ancestral ability for dissimilatory sulfate/sulfite reduction.
Journal of Bacteriology | 2004
Wataru Kitagawa; Nobutada Kimura; Yoichi Kamagata
p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101.
Applied and Environmental Microbiology | 2010
Nahomi Kaiwa; Takahiro Hosokawa; Yoshitomo Kikuchi; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Motomi Ito; Takema Fukatsu
ABSTRACT Symbiotic associations with midgut bacteria have been commonly found in diverse phytophagous heteropteran groups, where microbiological characterization of the symbiotic bacteria has been restricted to the stinkbug families Acanthosomatidae, Plataspidae, Pentatomidae, Alydidae, and Pyrrhocoridae. Here we investigated the midgut bacterial symbiont of Cantao ocellatus, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified from the insects of different geographic origins. The bacterium was detected in all 116 insects collected from 9 natural host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, not closely related to gut symbionts of other stinkbugs. Diagnostic PCR and in situ hybridization demonstrated that the bacterium is extracellularly located in the midgut 4th section with crypts. Electron microscopy of the crypts revealed a peculiar histological configuration at the host-symbiont interface. Egg sterilization experiments confirmed that the bacterium is vertically transmitted to stinkbug nymphs via egg surface contamination. In addition to the gut symbiont, some individuals of C. ocellatus harbored another bacterial symbiont in their gonads, which was closely related to Sodalis glossinidius, the secondary endosymbiont of tsetse flies. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.
Applied and Environmental Microbiology | 2010
Atsushi Kouzuma; Xian-Ying Meng; Nobutada Kimura; Kazuhito Hashimoto; Kazuya Watanabe
ABSTRACT A microbial fuel cell (MFC) was inoculated with a random transposon insertion mutant library of Shewanella oneidensis MR-1 and operated with lactate as the sole fuel to select for mutants that preferentially grew in it. Agar plate cultivation of the resultant MFC enrichment culture detected an increased number of colonies exhibiting rough morphology. One such isolate, strain 4A, generated 50% more current in an MFC than wild-type MR-1. Determination of the transposon insertion site in strain 4A followed by deletion and complementation experiments revealed that the SO3177 gene, encoding a putative formyltransferase and situated in a cell surface polysaccharide biosynthesis gene cluster, was responsible for the increased current. Transmission electron microscopy showed that a layered structure at the cell surface, stainable with ruthenium red, was impaired in the SO3177 mutant (ΔSO3177), confirming that SO3177 is involved in the biosynthesis of cell surface polysaccharides. Compared to the wild type, ΔSO3177 cells preferentially attached to graphite felt anodes in MFCs, while physicochemical analyses revealed that the cell surface of ΔSO3177 was more hydrophobic. These results demonstrate that cell surface polysaccharides affect not only the cell adhesion to graphite anodes but also the current generation in MFCs.
Applied and Environmental Microbiology | 2010
Hirokazu Toju; Takahiro Hosokawa; Ryuichi Koga; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Takema Fukatsu
ABSTRACT Here we investigated the bacterial endosymbionts of weevils of the genus Curculio. From all four species of Curculio weevils examined, a novel group of bacterial gene sequences were consistently identified. Molecular phylogenetic analyses demonstrated that the sequences formed a distinct clade in the Gammaproteobacteria, which was not related to previously known groups of weevil endosymbionts such as Nardonella spp. and Sodalis-allied symbionts. In situ hybridization revealed that the bacterium was intracellularly harbored in a bacteriome associated with larval midgut. In adult females, the bacterium was localized in the germalia at the tip of each overiole, suggesting vertical transmission via ovarial passage. Diagnostic PCR surveys detected high prevalence of the bacterial infection in natural host populations. Electron microscopy identified the reduced cell wall of the bacterial cells, and the bacterial genes exhibited AT-biased nucleotide composition and accelerated molecular evolution, which are suggestive of a long-lasting endosymbiotic association. On the basis of these results, we conclude that the novel endocellular bacteria represent the primary symbiont of Curculio weevils and proposed the designation “Candidatus Curculioniphilus buchneri.” In addition to “Ca. Curculioniphilus,” we identified Sodalis-allied gammaproteobacterial endosymbionts from the chestnut weevil, Curculio sikkimensis, which exhibited partial infection frequencies in host insect populations and neither AT-biased nucleotide composition nor accelerated molecular evolution. We suggest that such Sodalis-allied secondary symbionts in weevils might provide a potential source for symbiont replacements, as has occurred in an ancestor of Sitophilus grain weevils.
Zoological Science | 2011
Nahomi Kaiwa; Takahiro Hosokawa; Yoshitomo Kikuchi; Naruo Nikoh; Xian Ying Meng; Nobutada Kimura; Motomi Ito; Takema Fukatsu
Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of Eucorysses grandis, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, neither closely related to the gut symbiont of another scutellerid stinkbug, Cantao ocellatus, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracelluarly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A Sodalis-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.
Applied and Environmental Microbiology | 2013
Manabu Kanno; Taiki Katayama; Hideyuki Tamaki; Yasuo Mitani; Xian-Ying Meng; Tomoyuki Hori; Takashi Narihiro; Naoki Morita; Tamotsu Hoshino; Isao Yumoto; Nobutada Kimura; Satoshi Hanada; Yoichi Kamagata
ABSTRACT Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.
Applied and Environmental Microbiology | 2012
Eri Nasuno; Nobutada Kimura; Masaki J. Fujita; Cindy H. Nakatsu; Yoichi Kamagata; Satoshi Hanada
ABSTRACT A great deal of research has been done to understand bacterial cell-to-cell signaling systems, but there is still a large gap in our current knowledge because the majority of microorganisms in natural environments do not have cultivated representatives. Metagenomics is one approach to identify novel quorum sensing (QS) systems from uncultured bacteria in environmental samples. In this study, fosmid metagenomic libraries were constructed from a forest soil and an activated sludge from a coke plant, and the target genes were detected using a green fluorescent protein (GFP)-based Escherichia coli biosensor strain whose fluorescence was screened by spectrophotometry. DNA sequence analysis revealed two pairs of new LuxI family N-acyl-l-homoserine lactone (AHL) synthases and LuxR family transcriptional regulators (clones N16 and N52, designated AubI/AubR and AusI/AusR, respectively). AubI and AusI each produced an identical AHL, N-dodecanoyl-l-homoserine lactone (C12-HSL), as determined by nuclear magnetic resonance (NMR) and mass spectrometry. Phylogenetic analysis based on amino acid sequences suggested that AusI/AusR was from an uncultured member of the Betaproteobacteria and AubI/AubR was very deeply branched from previously described LuxI/LuxR homologues in isolates of the Proteobacteria. The phylogenetic position of AubI/AubR indicates that they represent a QS system not acquired recently from the Proteobacteria by horizontal gene transfer but share a more ancient ancestry. We demonstrated that metagenomic screening is useful to provide further insight into the phylogenetic diversity of bacterial QS systems by describing two new LuxI/LuxR-type QS systems from uncultured bacteria.
Bioscience, Biotechnology, and Biochemistry | 2011
Masaki J. Fujita; Nobutada Kimura; Atsushi Sakai; Yoichi Ichikawa; Tomohiro Hanyu; Masami Otsuka
A biosynthetic gene cluster of siderophore consisting of five open reading frames (ORFs) was cloned by functional screening of a metagenomic library constructed from tidal-flat sediment. Expression of the cloned biosynthetic genes in Escherichia coli led to the production of vibrioferrin, a siderophore originally reported for the marine bacterium Vibrio parahaemolyticus. To the best of our knowledge, this is the first example of heterologous production of a siderophore by biosynthetic genes cloned from a metagenomic library. The cloned cluster was one of the largest of the clusters obtained by functional screening. In this study, we demonstrated and extended the possibility of function-based metagenomic research.
PLOS ONE | 2013
Kazuto Takasaki; Takamasa Miura; Manabu Kanno; Hideyuki Tamaki; Satoshi Hanada; Yoichi Kamagata; Nobutada Kimura
To discover the structural and functional novel glycoside hydrolase enzymes from soil fungal communities that decompose cellulosic biomass, transcripts of functional genes in a forest soil were analyzed. Pyrosequencing of the Avicel and wheat-amended soil cDNAs produced 56,084 putative protein-coding sequence (CDS) fragments, and the most dominant group of putative CDSs based on the taxonomic analysis was assigned to the domain Eukarya, which accounted for 99% of the total number of the putative CDSs. Of 9,449 eukaryotic CDSs whose functions could be categorized, approximately 40% of the putative CDSs corresponded to metabolism-related genes, including genes involved in carbohydrate, amino acid, and energy metabolism. Among the carbohydrate-metabolism genes, 129 sequences encoded glycoside hydrolase enzymes, with 47 sequences being putative cellulases belonging to 13 GH families. To characterize the function of glycoside hydrolase enzymes, we synthesized the putative CelA gene with codon optimization for heterologous expression in Escherichia coli, which was shown to be similar to the structure of plant expansins, and observed stimulation for cellulase activity on Avicel degradation. This study demonstrated that fungal communities adapt to Avicel and wheat decomposition and that metatranscriptomic sequence data can be reference data for identifying a novel gene.
Collaboration
Dive into the Nobutada Kimura's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs