Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobutaka Kato is active.

Publication


Featured researches published by Nobutaka Kato.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

David Plouffe; Achim Brinker; Case W. McNamara; Kerstin Henson; Nobutaka Kato; Kelli Kuhen; Advait Nagle; Francisco Adrian; Jason Matzen; Paul Anderson; Tae-gyu Nam; Nathanael S. Gray; Arnab K. Chatterjee; Jeff Janes; S. Frank Yan; Richard Trager; Jeremy S. Caldwell; Peter G. Schultz; Yingyao Zhou; Elizabeth A. Winzeler

The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Nature | 2013

Targeting Plasmodium PI(4)K to eliminate malaria

Case W. McNamara; Marcus C. S. Lee; Chek Shik Lim; Siau Hoi Lim; Jason Roland; Advait Nagle; Oliver Simon; Bryan K. S. Yeung; Arnab K. Chatterjee; Susan McCormack; Micah J. Manary; Anne-Marie Zeeman; Koen J. Dechering; T. R. Santha Kumar; Philipp P. Henrich; Kerstin Gagaring; Maureen Ibanez; Nobutaka Kato; Kelli Kuhen; Christoph Fischli; Matthias Rottmann; David Plouffe; Badry Bursulaya; Stephan Meister; Lucia E. Rameh; Joerg Trappe; Dorothea Haasen; Martijn Timmerman; Robert W. Sauerwein; Rossarin Suwanarusk

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.Summary Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here, we identify a lipid kinase, phosphatidylinositol 4-kinase (PI4K), as the target of imidazopyrazines, a novel antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens, P. falciparum and P. vivax, and inhibit liver stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI4K, altering the intracellular distribution of phosphatidylinositol 4-phosphate. Collectively, our data define PI4K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Nature Chemical Biology | 2008

Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility.

Nobutaka Kato; Tomoyo Sakata; Ghislain Breton; Karine G. Le Roch; Advait Nagle; Carsten B Andersen; Badry Bursulaya; Kerstin Henson; Jeffrey R. Johnson; Kota Arun Kumar; Felix Marr; Daniel E. Mason; Case W. McNamara; David Plouffe; Muriel Spooner; Tove Tuntland; Yingyao Zhou; Eric C. Peters; Arnab K. Chatterjee; Peter G. Schultz; Gary E. Ward; Nathanael S. Gray; Jeffrey F. Harper; Elizabeth A. Winzeler

Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.


ACS Chemical Biology | 2011

A Chemical Genomic Analysis of Decoquinate, a Plasmodium falciparum Cytochrome b Inhibitor

Tae-gyu Nam; Case W. McNamara; Selina Bopp; Neekesh V. Dharia; Stephan Meister; Ghislain M. C. Bonamy; David Plouffe; Nobutaka Kato; Susan McCormack; Badry Bursulaya; Hangjun Ke; Akhil B. Vaidya; Peter G. Schultz; Elizabeth A. Winzeler

Decoquinate has single-digit nanomolar activity against in vitro blood stage Plasmodium falciparum parasites, the causative agent of human malaria. In vitro evolution of decoquinate-resistant parasites and subsequent comparative genomic analysis to the drug-sensitive parental strain revealed resistance was conferred by two nonsynonymous single nucleotide polymorphisms in the gene encoding cytochrome b. The resultant amino acid mutations, A122T and Y126C, reside within helix C in the ubiquinol-binding pocket of cytochrome b, an essential subunit of the cytochrome bc1 complex. As with other cytochrome bc1 inhibitors, such as atovaquone, decoquinate has low nanomolar activity against in vitro liver stage P. yoelii and provides partial prophylaxis protection when administered to infected mice at 50 mg kg–1. In addition, transgenic parasites expressing yeast dihydroorotate dehydrogenase are >200-fold less sensitive to decoquinate, which provides additional evidence that this drug inhibits the parasite’s mitochondrial electron transport chain. Importantly, decoquinate exhibits limited cross-resistance to a panel of atovaquone-resistant parasites evolved to harbor various mutations in cytochrome b. The basis for this difference was revealed by molecular docking studies, in which both of these inhibitors were shown to have distinctly different modes of binding within the ubiquinol-binding site of cytochrome b.


Cell Host & Microbe | 2016

High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission

David Plouffe; Melanie Wree; Alan Y. Du; Stephan Meister; Fengwu Li; Kailash P. Patra; Aristea Lubar; Shinji L. Okitsu; Erika L. Flannery; Nobutaka Kato; Olga Tanaseichuk; Eamon Comer; Bin Zhou; Kelli Kuhen; Yingyao Zhou; Didier Leroy; Stuart L. Schreiber; Christina Scherer; Joseph M. Vinetz; Elizabeth A. Winzeler

Summary Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs.


Nature | 2016

Diversity-oriented synthesis yields novel multistage antimalarial inhibitors

Nobutaka Kato; Eamon Comer; Tomoyo Sakata-Kato; Arvind Sharma; Manmohan Sharma; Micah Maetani; Jessica Bastien; Nicolas M. B. Brancucci; Joshua Bittker; Victoria C. Corey; David C. Clarke; Emily R. Derbyshire; Gillian L. Dornan; Sandra Duffy; Sean Eckley; Maurice A. Itoe; Karin M. J. Koolen; Timothy A. Lewis; Ping S. Lui; Amanda K Lukens; Emily Lund; Sandra March; Elamaran Meibalan; Bennett C. Meier; Jacob A. McPhail; Branko Mitasev; Eli L. Moss; Morgane Sayes; Yvonne Van Gessel; Mathias J. Wawer

Antimalarial drugs have thus far been chiefly derived from two sources—natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Vector-borne and Zoonotic Diseases | 2008

Evaluation of the Function of a Type I Peritrophic Matrix as a Physical Barrier for Midgut Epithelium Invasion by Mosquito-Borne Pathogens in Aedes aegypti

Nobutaka Kato; Christopher R. Mueller; Jeremy F. Fuchs; Kate L. Mcelroy; Vilena Wessely; Stephen Higgs; Bruce M. Christensen

In addition to modulating blood meal digestion and protecting the midgut epithelial cells from mechanical and chemical damage, a biological function attributed to the mosquito type I peritrophic matrix (PM) is preventing or reducing pathogen invasion, especially from Plasmodium spp. Previously, we demonstrated that chitin is an essential component of the PM and is synthesized de novo in response to blood feeding in Aedes aegypti. Therefore, knocking down chitin synthase expression by RNA interference severely disrupts formation of the PM. Utilizing this artificial manipulation, we determined that the absence of the PM has no effect on the development of Brugia pahangi or on the dissemination of dengue virus. However, infectivity of Plasmodium gallinaceum is lower, as measured by oocyst intensity, when the PM is absent. Our findings also suggest that the PM seems to localize proteolytic enzymes along the periphery of the blood bolus during the first 24 hours after blood feeding. Finally, the absence of the PM does not affect reproductive fitness, as measured by the number and viability of eggs oviposited.


Journal of The American Society of Nephrology | 2008

Poly(ADP-Ribose) Polymerase-1 Enhances Transcription of the Profibrotic CCN2 Gene

Hirokazu Okada; Tsutomu Inoue; Tomohiro Kikuta; Nobutaka Kato; Yoshihiko Kanno; Narumi Hirosawa; Yasushi Sakamoto; Takeshi Sugaya; Hiromichi Suzuki

In the fibrotic kidney, tubular epithelial cells express CCN2, formerly known as connective tissue growth factor. Because little is known about the transcriptional regulation of this profibrotic protein, this study investigated the mechanism underlying epithelial cell-selective upregulation of CCN2 in fibrosis. It was found that a previously unidentified cis-regulatory element located in the promoter of the murine CCN2 gene plays an essential role in basal and TGF-beta1-induced gene transcription in tubular epithelial cells; this element acts in conjunction with the Smad-binding element and the basal control element-1. By protein mass fingerprint analysis and de novo sequencing, poly(ADP-ribose) polymerase-1 (PARP-1) was identified as a trans-acting protein factor that binds to this promoter region, which we termed the PARP-1-binding element. In vivo, knockdown of PARP-1 in proximal tubular epithelial cells significantly reduced CCN2 mRNA levels and attenuated interstitial fibrosis in the obstructed kidney. Thus, the PARP-1/PARP-1 binding element complex functions as a nonspecific, fundamental enhancer of both basal and induced CCN2 gene transcription in tubular epithelial cells. This regulatory complex may be a promising target for antifibrotic therapy.


ACS Infectious Diseases | 2016

High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria

Justine Swann; Victoria C. Corey; Christina Scherer; Nobutaka Kato; Eamon Comer; Micah Maetani; Yevgeniya Antonova-Koch; Christin Reimer; Kerstin Gagaring; Maureen Ibanez; David Plouffe; Anne-Marie Zeeman; Clemens H. M. Kocken; Case W. McNamara; Stuart L. Schreiber; Brice Campo; Elizabeth A. Winzeler; Stephan Meister

In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12–13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages.

Collaboration


Dive into the Nobutaka Kato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Case W. McNamara

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Plouffe

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsuneo Takenaka

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar

Yoichi Ohno

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge