Case W. McNamara
Genomics Institute of the Novartis Research Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Case W. McNamara.
Science | 2010
Matthias Rottmann; Case W. McNamara; Bryan K. S. Yeung; Marcus C. S. Lee; Bin Zou; Bruce Russell; Patrick Seitz; David Plouffe; Neekesh V. Dharia; Jocelyn Tan; Steven B. Cohen; Kathryn R. Spencer; Gonzalo E. González-Páez; Suresh B. Lakshminarayana; Anne Goh; Rossarin Suwanarusk; Timothy Jegla; Esther K. Schmitt; Hans-Peter Beck; Reto Brun; François Nosten; Laurent Rénia; Véronique Dartois; Thomas H. Keller; David A. Fidock; Elizabeth A. Winzeler; Thierry T. Diagana
Antimalarial Drug Candidate Spiroindolones were discovered as promising antimalarial drug candidates through a high-throughput screening approach that should be applicable to a range of neglected infectious diseases. Rottmann et al. (p. 1175; see the Perspective by Wells) present the preclinical profile for an optimized spiroindolone drug candidate, NITD609. They obtained evidence for a decrease in drug sensitivity in strains of the malaria parasite Plasmodium falciparum bearing amino acid mutations in the P-type ATPase, indicating possible mechanisms of action and/or resistance. High-throughput screening has offered up an oral antimalarial drug and pointers to its mechanism of action. Recent reports of increased tolerance to artemisinin derivatives—the most recently adopted class of antimalarials—have prompted a need for new treatments. The spirotetrahydro-β-carbolines, or spiroindolones, are potent drugs that kill the blood stages of Plasmodium falciparum and Plasmodium vivax clinical isolates at low nanomolar concentration. Spiroindolones rapidly inhibit protein synthesis in P. falciparum, an effect that is ablated in parasites bearing nonsynonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows pharmacokinetic properties compatible with once-daily oral dosing and has single-dose efficacy in a rodent malaria model.
Proceedings of the National Academy of Sciences of the United States of America | 2008
David Plouffe; Achim Brinker; Case W. McNamara; Kerstin Henson; Nobutaka Kato; Kelli Kuhen; Advait Nagle; Francisco Adrian; Jason Matzen; Paul Anderson; Tae-gyu Nam; Nathanael S. Gray; Arnab K. Chatterjee; Jeff Janes; S. Frank Yan; Richard Trager; Jeremy S. Caldwell; Peter G. Schultz; Yingyao Zhou; Elizabeth A. Winzeler
The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities.
Science | 2011
Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot
Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.
Nature | 2013
Case W. McNamara; Marcus C. S. Lee; Chek Shik Lim; Siau Hoi Lim; Jason Roland; Advait Nagle; Oliver Simon; Bryan K. S. Yeung; Arnab K. Chatterjee; Susan McCormack; Micah J. Manary; Anne-Marie Zeeman; Koen J. Dechering; T. R. Santha Kumar; Philipp P. Henrich; Kerstin Gagaring; Maureen Ibanez; Nobutaka Kato; Kelli Kuhen; Christoph Fischli; Matthias Rottmann; David Plouffe; Badry Bursulaya; Stephan Meister; Lucia E. Rameh; Joerg Trappe; Dorothea Haasen; Martijn Timmerman; Robert W. Sauerwein; Rossarin Suwanarusk
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.Summary Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here, we identify a lipid kinase, phosphatidylinositol 4-kinase (PI4K), as the target of imidazopyrazines, a novel antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens, P. falciparum and P. vivax, and inhibit liver stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI4K, altering the intracellular distribution of phosphatidylinositol 4-phosphate. Collectively, our data define PI4K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
Nature Chemical Biology | 2008
Nobutaka Kato; Tomoyo Sakata; Ghislain Breton; Karine G. Le Roch; Advait Nagle; Carsten B Andersen; Badry Bursulaya; Kerstin Henson; Jeffrey R. Johnson; Kota Arun Kumar; Felix Marr; Daniel E. Mason; Case W. McNamara; David Plouffe; Muriel Spooner; Tove Tuntland; Yingyao Zhou; Eric C. Peters; Arnab K. Chatterjee; Peter G. Schultz; Gary E. Ward; Nathanael S. Gray; Jeffrey F. Harper; Elizabeth A. Winzeler
Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.
Cell Host & Microbe | 2012
Dominic Hoepfner; Case W. McNamara; Chek Shik Lim; Christian Studer; Ralph Riedl; Thomas Aust; Susan McCormack; David Plouffe; Stephan Meister; Sven Schuierer; Uwe Plikat; Nicole Hartmann; Frank Staedtler; Simona Cotesta; Esther K. Schmitt; Frank Petersen; Frantisek Supek; Richard Glynne; John A. Tallarico; Jeffrey A. Porter; Mark C. Fishman; Christophe Bodenreider; Thierry T. Diagana; N. Rao Movva; Elizabeth A. Winzeler
Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.
Cell Host & Microbe | 2013
Natalie J. Spillman; Richard J.W. Allen; Case W. McNamara; Bryan K. S. Yeung; Elizabeth A. Winzeler; Thierry T. Diagana; Kiaran Kirk
Summary The malaria parasite Plasmodium falciparum establishes in the host erythrocyte plasma membrane new permeability pathways that mediate nutrient uptake into the infected cell. These pathways simultaneously allow Na+ influx, causing [Na+] in the infected erythrocyte cytosol to increase to high levels. The intraerythrocytic parasite itself maintains a low cytosolic [Na+] via unknown mechanisms. Here we present evidence that the intraerythrocytic parasite actively extrudes Na+ against an inward gradient via PfATP4, a parasite plasma membrane protein with sequence similarities to Na+-ATPases of lower eukaryotes. Mutations in PfATP4 confer resistance to a potent class of antimalarials, the spiroindolones. Consistent with this, the spiroindolones cause a profound disruption in parasite Na+ homeostasis, which is attenuated in parasites bearing resistance-conferring mutations in PfATP4. The mutant parasites also show some impairment of Na+ regulation. Taken together, our results are consistent with PfATP4 being a Na+ efflux ATPase and a target of the spiroindolones.
PLOS Genetics | 2013
Selina Bopp; Micah J. Manary; A. Taylor Bright; Geoffrey L. Johnston; Neekesh V. Dharia; Fabio Luna; Susan McCormack; David Plouffe; Case W. McNamara; John R. Walker; David A. Fidock; Eros Lazzerini Denchi; Elizabeth A. Winzeler
Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the individual hosts and large populations.
ACS Chemical Biology | 2011
Tae-gyu Nam; Case W. McNamara; Selina Bopp; Neekesh V. Dharia; Stephan Meister; Ghislain M. C. Bonamy; David Plouffe; Nobutaka Kato; Susan McCormack; Badry Bursulaya; Hangjun Ke; Akhil B. Vaidya; Peter G. Schultz; Elizabeth A. Winzeler
Decoquinate has single-digit nanomolar activity against in vitro blood stage Plasmodium falciparum parasites, the causative agent of human malaria. In vitro evolution of decoquinate-resistant parasites and subsequent comparative genomic analysis to the drug-sensitive parental strain revealed resistance was conferred by two nonsynonymous single nucleotide polymorphisms in the gene encoding cytochrome b. The resultant amino acid mutations, A122T and Y126C, reside within helix C in the ubiquinol-binding pocket of cytochrome b, an essential subunit of the cytochrome bc1 complex. As with other cytochrome bc1 inhibitors, such as atovaquone, decoquinate has low nanomolar activity against in vitro liver stage P. yoelii and provides partial prophylaxis protection when administered to infected mice at 50 mg kg–1. In addition, transgenic parasites expressing yeast dihydroorotate dehydrogenase are >200-fold less sensitive to decoquinate, which provides additional evidence that this drug inhibits the parasite’s mitochondrial electron transport chain. Importantly, decoquinate exhibits limited cross-resistance to a panel of atovaquone-resistant parasites evolved to harbor various mutations in cytochrome b. The basis for this difference was revealed by molecular docking studies, in which both of these inhibitors were shown to have distinctly different modes of binding within the ubiquinol-binding site of cytochrome b.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Michael B. Harbut; Bhumit A. Patel; Bryan K. S. Yeung; Case W. McNamara; A. Taylor Bright; Jaime Ballard; Frantisek Supek; Todd E. Golde; Elizabeth A. Winzeler; Thierry T. Diagana; Doron C. Greenbaum
Early secretory and endoplasmic reticulum (ER)-localized proteins that are terminally misfolded or misassembled are degraded by a ubiquitin- and proteasome-mediated process known as ER-associated degradation (ERAD). Protozoan pathogens, including the causative agents of malaria, toxoplasmosis, trypanosomiasis, and leishmaniasis, contain a minimal ERAD network relative to higher eukaryotic cells, and, because of this, we observe that the malaria parasite Plasmodium falciparum is highly sensitive to the inhibition of components of this protein quality control system. Inhibitors that specifically target a putative protease component of ERAD, signal peptide peptidase (SPP), have high selectivity and potency for P. falciparum. By using a variety of methodologies, we validate that SPP inhibitors target P. falciparum SPP in parasites, disrupt the protein’s ability to facilitate degradation of unstable proteins, and inhibit its proteolytic activity. These compounds also show low nanomolar activity against liver-stage malaria parasites and are also equipotent against a panel of pathogenic protozoan parasites. Collectively, these data suggest ER quality control as a vulnerability of protozoan parasites, and that SPP inhibition may represent a suitable transmission blocking antimalarial strategy and potential pan-protozoan drug target.