Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuyuki Matsunaga is active.

Publication


Featured researches published by Nobuyuki Matsunaga.


Bioorganic & Medicinal Chemistry | 2011

Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer.

Tomohiro Kaku; Takenori Hitaka; Akio Ojida; Nobuyuki Matsunaga; Mari Adachi; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Teruaki Okuda; Satoru Asahi; Shuichi Furuya; Akihiro Tasaka

A novel naphthylmethylimidazole derivative 1 and its related compounds were identified as 17,20-lyase inhibitors. Based on the structure-activity relationship around the naphthalene scaffold and the results of a docking study of 1a in the homology model of 17,20-lyase, the 6,7-dihydro-5H-pyrrolo[1,2-c]imidazole derivative (+)-3c was synthesized and identified as a potent and highly selective 17,20-lyase inhibitor. Biological evaluation of (+)-3c at a dose of 1mg/kg in a male monkey model revealed marked reductions in both serum testosterone and dehydroepiandrosterone concentrations. Therefore, (+)-3c (termed orteronel [TAK-700]) was selected as a candidate for clinical evaluation and is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer.


Journal of Medicinal Chemistry | 2011

Identification of Benzoxazin-3-one Derivatives as Novel, Potent, and Selective Nonsteroidal Mineralocorticoid Receptor Antagonists

Tomoaki Hasui; Nobuyuki Matsunaga; Taiichi Ora; Norio Ohyabu; Nobuhiro Nishigaki; Yoshimi Imura; Yumiko Igata; Hideki Matsui; Takashi Motoyaji; Toshimasa Tanaka; Noriyuki Habuka; Satoshi Sogabe; Midori Ono; Christopher Stephen Siedem; Tony P. Tang; Cassandra Gauthier; Lisa A. De Meese; Steven A. Boyd; Shoji Fukumoto

Mineralocorticoid receptor (MR) blockade has come into focus as a promising approach for the treatment of cardiovascular diseases such as hypertension and congestive heart failure. In order to identify a novel class of nonsteroidal MR antagonists that exhibit significant potency and good selectivity over other steroidal hormone receptors, we designed a novel series of benzoxazin-3-one derivatives and synthesized them from 6-(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-2H-1,4-benzoxazin-3(4H)-one (1a), high-throughput screening (HTS) hit compound. Our design was based on a crystal structure of an MR/compound complex and a docking model. In the course of lead generation from 1a, a 1,2-diaryl framework was characterized as a key structure with high binding affinity. On the basis of scaffold hopping and optimization studies, benzoxazin-3-one derivatives possessing 1-phenyl-3-trifluoromethylpyrazol-5-yl moiety at the 6-position were identified as a novel series of potent and selective MR antagonists. Among these compounds, 6-[1-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]-2H-1,4-benzoxazin-3(4H)-one (14n) showed highly potent activity and good selectivity and also exhibited a significant antihypertensive effect in deoxycorticosterone acetate-salt hypertensive rats. On the basis of these results, compound 14n was progressed for further pharmacological evaluation.


Bioorganic & Medicinal Chemistry | 2012

Design, synthesis, and biological evaluation of 4-phenylpyrrole derivatives as novel androgen receptor antagonists

Satoshi Yamamoto; Nobuyuki Matsunaga; Takenori Hitaka; Masami Yamada; Takahito Hara; Junichi Miyazaki; Takashi Santou; Masami Kusaka; Masuo Yamaoka; Naoyuki Kanzaki; Shuichi Furuya; Akihiro Tasaka; Kazumasa Hamamura; Mitsuhiro Ito

A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.


Bioorganic & Medicinal Chemistry | 2011

17,20-Lyase inhibitors. Part 4: Design, synthesis and structure–activity relationships of naphthylmethylimidazole derivatives as novel 17,20-lyase inhibitors

Tomohiro Kaku; Nobuyuki Matsunaga; Akio Ojida; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Akihiro Tasaka

A novel series of naphthylmethylimidazole derivatives and related compounds have been investigated as selective 17,20-lyase inhibitors. Optimization of the substituent at the 6-position on the naphthalene ring was performed to yield a methylcarbamoyl derivative, which exhibited potent inhibitory activity against human 17,20-lyase and promising selectivity (>200-fold) for 17,20-lyase over CYP3A4. Further modifications of the methylcarbamoyl derivative led to the discovery of the corresponding tricyclic compound, which showed highly potent activity against human 17,20-lyase (IC(50) 19 nM) and good selectivity (>1000-fold) for inhibition of 17,20-lyase over CYP3A4. Additional biological evaluation revealed that the tricyclic compound had potent in vivo efficacy in monkeys and favorable pharmacokinetic profiles when administered in rats. Asymmetric synthesis of the selective tricyclic inhibitor was also achieved using a chiral α-hydroxy ketone.


Bioorganic & Medicinal Chemistry | 2011

17,20-Lyase inhibitors. Part 3: Design, synthesis, and structure–activity relationships of biphenylylmethylimidazole derivatives as novel 17,20-lyase inhibitors

Tomohiro Kaku; Saori Tsujimoto; Nobuyuki Matsunaga; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Akihiro Tasaka

A novel series of biphenylylmethylimidazole derivatives and related compounds were synthesized as inhibitors of 17,20-lyase, a key enzyme in the production of steroid hormones, and their biological activities were evaluated. In an attempt to identify potent and selective inhibitors of 17,20-lyase over the related CYP3A4 enzyme, a homology model for human 17,20-lyase was developed using the X-ray crystallographic structure of the mammalian CYP2C5 enzyme. With the aid of molecular modeling, optimization of the biphenyl moiety was performed to give an acetamide derivative, which was resolved by HPLC to give the active (-)-enantiomer. The obtained active enantiomer showed not only potent inhibition of both rat and human 17,20-lyase,with IC(50) values of 14 and 26 nM, respectively, but also excellent selectivity (>300-fold) for inhibition of 17,20-lyase over CYP3A4. Moreover, the active enantiomer significantly reduced both serum testosterone and DHEA concentrations in a monkey model after single oral administration. Asymmetric synthesis of the active enantiomer was also developed via a chiral intermediate using a diastereoselective Grignard reaction.


Journal of Medicinal Chemistry | 2017

Discovery of 3,5-Diphenyl-4-methyl-1,3-oxazolidin-2-ones as Novel, Potent, and Orally Available Δ-5 Desaturase (D5D) Inhibitors

Jun Fujimoto; Rei Okamoto; Naoyoshi Noguchi; Ryoma Hara; Shinichi Masada; Tetsuji Kawamoto; Hiroki Nagase; Yumiko Okano Tamura; Mitsuaki Imanishi; Shuichi Takagahara; Kazuki Kubo; Kimio Tohyama; Koichi Iida; Tomohiro Andou; Ikuo Miyahisa; Junji Matsui; Ryouta Hayashi; Tsuyoshi Maekawa; Nobuyuki Matsunaga

The discovery and optimization of Δ-5 desaturase (D5D) inhibitors are described. Investigation of the 1,3-oxazolidin-2-one scaffold was inspired by a pharmacophore model constructed from the common features of several hit compounds, resulting in the identification of 3,5-diphenyl-1,3-oxazolidin-2-one 5h as a novel lead showing potent in vitro activity. Subsequent optimization focused on the modification of two metabolic sites, which provided (4S,5S)-5i, a derivative with improved metabolic stability. Moreover, adding a substituent into the upper phenyl moiety further enhanced the intrinsic activity, which led to the discovery of 5-[(4S,5S)-5-(4fluorophenyl)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]benzene-1,3-dicarbonitrile (4S,5S)-5n, endowed with excellent D5D binding affinity, cellular activity, and high oral bioavailability in a mouse. It exhibited robust in vivo hepatic arachidonic acid/dihomo-γ-linolenic acid ratio reduction (a target engagement marker) in an atherosclerosis mouse model. Finally, an asymmetric synthetic procedure for this compound was established.


Bioorganic & Medicinal Chemistry | 2003

TAK-599, a novel N-Phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physicochemical and pharmacological properties

Tomoyasu Ishikawa; Nobuyuki Matsunaga; Hiroyuki Tawada; Noritaka Kuroda; Yutaka Nakayama; Yukio Ishibashi; Mitsumi Tomimoto; Yukihiro Ikeda; Yoshihiko Tagawa; Yuji Iizawa; Kenji Okonogi; Shohei Hashiguchi; Akio Miyake


Bioorganic & Medicinal Chemistry | 2004

C17,20-lyase inhibitors. Part 2: Design, synthesis and structure–activity relationships of (2-naphthylmethyl)-1H-imidazoles as novel C17,20-lyase inhibitors

Nobuyuki Matsunaga; Tomohiro Kaku; Akio Ojida; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Akihiro Tasaka


Bioorganic & Medicinal Chemistry | 2004

C17,20-lyase inhibitors I. Structure-based de novo design and SAR study of C17,20-lyase inhibitors.

Nobuyuki Matsunaga; Tomohiro Kaku; Fumio Itoh; Toshimasa Tanaka; Takahito Hara; Hiroshi Miki; Masahiko Iwasaki; Tetsuya Aono; Masuo Yamaoka; Masami Kusaka; Akihiro Tasaka


Archive | 2002

Androgen receptor antagonists

Shuichi Furuya; Nobuyuki Matsunaga; Masami Kusaka; Takahito Hara; Junichi Miyazaki

Collaboration


Dive into the Nobuyuki Matsunaga's collaboration.

Top Co-Authors

Avatar

Masami Kusaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akihiro Tasaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahito Hara

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Takenori Hitaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mari Adachi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Kaku

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Isao Aoki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masuo Yamaoka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shuichi Furuya

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge