Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahito Hara is active.

Publication


Featured researches published by Takahito Hara.


Bioorganic & Medicinal Chemistry | 2011

Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer.

Tomohiro Kaku; Takenori Hitaka; Akio Ojida; Nobuyuki Matsunaga; Mari Adachi; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Teruaki Okuda; Satoru Asahi; Shuichi Furuya; Akihiro Tasaka

A novel naphthylmethylimidazole derivative 1 and its related compounds were identified as 17,20-lyase inhibitors. Based on the structure-activity relationship around the naphthalene scaffold and the results of a docking study of 1a in the homology model of 17,20-lyase, the 6,7-dihydro-5H-pyrrolo[1,2-c]imidazole derivative (+)-3c was synthesized and identified as a potent and highly selective 17,20-lyase inhibitor. Biological evaluation of (+)-3c at a dose of 1mg/kg in a male monkey model revealed marked reductions in both serum testosterone and dehydroepiandrosterone concentrations. Therefore, (+)-3c (termed orteronel [TAK-700]) was selected as a candidate for clinical evaluation and is currently in phase III clinical trials for the treatment of castration-resistant prostate cancer.


Clinical Cancer Research | 2010

Overcoming Persistent Dependency on Androgen Signaling after Progression to Castration-Resistant Prostate Cancer

Masuo Yamaoka; Takahito Hara; Masami Kusaka

Prostate cancer is the most common form of cancer in males in the United States, and the second leading cause of cancer death. Initially, most cases of prostate cancer respond well to hormone therapy; however, resistance often develops rapidly, leading to castration-resistant prostate cancer (CRPC). Several mechanisms for castration resistance have been proposed, of which the most significant seems to be the “intracrine” production of androgens from adrenal androgen or intratumorally via the de novo route. This mechanism stimulates disease progression through reactivation of androgen receptor signaling in patients who have previously undergone castration therapy. 17,20-lyase is essential for androgen synthesis in both the adrenal glands and CRPC tissue, and some 17,20-lyase inhibitors and second-generation anti-androgens that were developed to treat CRPC are currently under clinical investigation, with encouraging preliminary data reported so far. However, resistance to some of these therapies has already been noted. The study of circulating tumor cells will likely be important not only to identify patients likely to receive benefit from this therapeutic approach, but also to further understand the molecular mechanisms of resistance. Clin Cancer Res; 16(17); 4319–24. ©2010 AACR.


The Journal of Steroid Biochemistry and Molecular Biology | 2013

Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats

Takahito Hara; Jin Kouno; Tomohiro Kaku; Toshiyuki Takeuchi; Masami Kusaka; Akihiro Tasaka; Masuo Yamaoka

Endogenous androgens play a role in the development and progression of prostate cancer (PC), thus androgen suppression may offer an effective therapeutic strategy for this disease. Orteronel (TAK-700), 6-[(7S)-7-hydroxy-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-7-yl]-N-methyl-2-naphthamide, is a novel, non-steroidal, selective inhibitor of the 17,20-lyase activity of CYP17A--a key enzyme in the production of steroidal hormones--and is being developed as a therapy for PC. The purpose of this study was to elucidate the inhibitory activity of orteronel, in particular its specificity for androgen synthesis enzymes, in male rats--an androgen-synthesis model that largely reflects this pathway in humans. Orteronel inhibited 17,20-lyase activity in rats with an IC(50) of 1200 nM but did not inhibit 17α-hydroxylase or 11β-hydroxylase (CYP11B1) activity in rats at concentrations up to 10 μM. In cellular steroidogenesis assays using rat testicular cells, orteronel suppressed testosterone and androstenedione production with an IC(50) of 640 nM and 210 nM, respectively, but did not suppress either corticosterone or aldosterone production in rat adrenal cells at concentrations up to 30 μM. In addition, serum testosterone and androstenedione levels in human chorionic gonadotropin-injected hypophysectomized rats were significantly reduced by single oral administration of orteronel at a dose of 30 mg/kg (both p ≤ 0.01); serum corticosterone and aldosterone levels in ACTH-injected hypophysectomized rats did not result in significant differences compared with controls, following orteronel administration at doses up to 300 mg/kg. Serum testosterone levels in intact male rats were significantly reduced by orteronel 4h after dosing at 100mg/kg (p ≤ 0.01); testosterone levels showed a tendency to recover afterward. In intact male rats, the weight of the prostate glands and seminal vesicles was decreased in a dose-dependent manner following multiple doses of orteronel at 37.5, 150, and 600 mg/kg, TID for 4 days. The reversibility of orteronel was further confirmed using a human adrenocortical tumor cell line. In summary, orteronel is a selective and reversible 17,20-lyase inhibitor, and decreases the weight of androgen-dependent organs in male rats. Our data suggests that orteronel would therefore be effective for androgen-dependent disorders such as PC.


Cell Biology International | 2010

A mutation in β-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line

Takahito Hara; Kazutaka Ushio; Mayumi Nishiwaki; Jin Kouno; Hideo Araki; Yukiko Hikichi; Masahiko Hattori; Yumi N. Imai; Masuo Yamaoka

The mechanisms of docetaxel resistance in PC (prostate cancer) are unclear because of the lack of suitable experimental models, and no effective treatment exists for docetaxel‐resistant PC. We established a docetaxel‐resistant cell line, LNDCr, from an androgen‐refractory PC cell line, LNCaP‐hr, by intermittent exposure to docetaxel in vitro. The LNDCr cells harboured an F270I mutation in class I β‐tubulin, and demonstrated impaired tubulin polymerization by docetaxel. AR signalling was sustained in LNDCr cells, and AR knockdown suppressed the growth of LNDCr cells. These results suggest that an acquired mutation in β‐tubulin is associated with docetaxel resistance in PC and that a novel AR‐targeted therapy is effective for docetaxel‐resistant PC.


Bioorganic & Medicinal Chemistry | 2012

Design, synthesis, and biological evaluation of 4-phenylpyrrole derivatives as novel androgen receptor antagonists

Satoshi Yamamoto; Nobuyuki Matsunaga; Takenori Hitaka; Masami Yamada; Takahito Hara; Junichi Miyazaki; Takashi Santou; Masami Kusaka; Masuo Yamaoka; Naoyuki Kanzaki; Shuichi Furuya; Akihiro Tasaka; Kazumasa Hamamura; Mitsuhiro Ito

A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.


Oncogenesis | 2013

Orphan nuclear receptor HNF4G promotes bladder cancer growth and invasion through the regulation of the hyaluronan synthase 2 gene

Takatsugu Okegawa; K Ushio; M Imai; Megumi Morimoto; Takahito Hara

Nuclear receptors (NRs) are a class of transcription factors that are closely involved in the progression of certain types of cancer. We aimed to study the relation between bladder cancer and NRs, with special focus on orphan NRs whose ligands and functions have not been identified. First, we examined the expression levels of 22 genes encoding orphan NRs in clinical bladder cancer and found that hepatocyte nuclear factor 4γ (HNF4G; NR2A2) and NR2F6 were the genes that were upregulated most frequently in cancer tissues compared with their paired normal tissues. Knockdown and overexpression of each of these orphan NRs suppressed and stimulated the growth of bladder cancer cells in vitro, respectively. HNF4G also promoted tumor growth in bladder cancer xenograft models in vivo. Furthermore, HNF4G was both necessary and sufficient for the invasion of bladder cancer cells in vitro. Moreover, using microarray analyses, we identified hyaluronan synthase 2 (HAS2) as one of the genes induced by HNF4G in bladder cancer cells. Transcription was activated by HNF4G in reporter assays using the promoter/enhancer region of the HAS2 gene. The endogenous expression of the HAS2 gene was suppressed by knockdown of HNF4G. In turn, knockdown of HAS2 inhibited the growth and invasion of bladder cancer cells. Taken together, our data suggest that some orphan NRs are involved in bladder cancer progression and that, among them, HNF4G promotes the growth and invasion of bladder cancer, at least in part, via the regulation of the HAS2 gene.


EBioMedicine | 2017

Intratumor Heterogeneity in Primary Kidney Cancer Revealed by Metabolic Profiling of Multiple Spatially Separated Samples within Tumors

Takatsugu Okegawa; Megumi Morimoto; Satoru Nishizawa; Satoshi Kitazawa; Kohei Honda; Hideo Araki; Toshiya Tamura; Ayumi Ando; Yoshinori Satomi; Kikuo Nutahara; Takahito Hara

Metabolic alteration constitutes a hallmark of cancer. Glycolysis and antioxidant pathways in kidney cancer are elevated, with frequent mutation of the VHL gene. Intratumor genetic heterogeneity has been recently demonstrated in kidney cancer. However, intratumor metabolic heterogeneity has not been investigated. Here, we used global metabolomics analysis and tissue slice tracer studies to demonstrate that different portions of a human primary kidney tumor possess different metabolic characteristics and drug sensitivity. Pyruvate levels were elevated and pyruvate metabolism was altered in some tumor sections. These observations indicated that pyruvate metabolism may constitute a possible vulnerability of kidney cancer; indeed, pyruvate stimulated the growth of primary kidney cancer cells and pharmacological inhibition of pyruvate transporters slowed the growth of patient-derived kidney tumors in mice. These findings deepen our understanding of the intratumor metabolic heterogeneity of kidney cancer and may inform novel therapeutic approaches in human kidney cancer.


Bioorganic & Medicinal Chemistry | 2015

Synthesis and biological evaluation of novel selective androgen receptor modulators (SARMs). Part I

Katsuji Aikawa; Toshio Miyawaki; Takenori Hitaka; Yumi N. Imai; Takahito Hara; Junichi Miyazaki; Masuo Yamaoka; Masami Kusaka; Naoyuki Kanzaki; Akihiro Tasaka; Mitsuru Shiraishi; Satoshi Yamamoto

To develop effective drugs for hypogonadism, sarcopenia, and cachexia, we designed, synthesized, and evaluated selective androgen receptor modulators (SARMs) that exhibit not only anabolic effects on organs such as muscles and the central nervous system (CNS) but also neutral or antagonistic effects on the prostate. Based on the information obtained from a docking model with androgen receptor (AR), we modified a hit compound A identified through high-throughput screening. Among the prepared compounds, 1-(4-cyano-1-naphthyl)-2,3-disubstituted pyrrolidine derivatives 17h, 17m, and 17j had highly potent AR agonistic activities in vitro and good tissue selectivity in vivo. These derivatives increased the weight of the levator ani muscle without influencing the prostate and seminal vesicle. In addition, these compounds induced sexual behavior in castrated rats, indicating that the compounds could also act as agonists on the CNS.


Bioorganic & Medicinal Chemistry | 2011

17,20-Lyase inhibitors. Part 4: Design, synthesis and structure–activity relationships of naphthylmethylimidazole derivatives as novel 17,20-lyase inhibitors

Tomohiro Kaku; Nobuyuki Matsunaga; Akio Ojida; Toshimasa Tanaka; Takahito Hara; Masuo Yamaoka; Masami Kusaka; Akihiro Tasaka

A novel series of naphthylmethylimidazole derivatives and related compounds have been investigated as selective 17,20-lyase inhibitors. Optimization of the substituent at the 6-position on the naphthalene ring was performed to yield a methylcarbamoyl derivative, which exhibited potent inhibitory activity against human 17,20-lyase and promising selectivity (>200-fold) for 17,20-lyase over CYP3A4. Further modifications of the methylcarbamoyl derivative led to the discovery of the corresponding tricyclic compound, which showed highly potent activity against human 17,20-lyase (IC(50) 19 nM) and good selectivity (>1000-fold) for inhibition of 17,20-lyase over CYP3A4. Additional biological evaluation revealed that the tricyclic compound had potent in vivo efficacy in monkeys and favorable pharmacokinetic profiles when administered in rats. Asymmetric synthesis of the selective tricyclic inhibitor was also achieved using a chiral α-hydroxy ketone.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis, and biological evaluation of 3-aryl-3-hydroxy-1-phenylpyrrolidine derivatives as novel androgen receptor antagonists.

Satoshi Yamamoto; Hiromi Kobayashi; Tomohiro Kaku; Katsuji Aikawa; Takahito Hara; Masuo Yamaoka; Naoyuki Kanzaki; Atsushi Hasuoka; Atsuo Baba; Mitsuhiro Ito

We designed and synthesized a series of 3-aryl-3-hydroxy-1-phenylpyrrolidine derivatives D and evaluated their potential as novel androgen receptor (AR) antagonists therapeutically effective against castration-resistant prostate cancer (CRPC). Introduction of a methyl group at the 2-position (R(2)) of the pyrrolidine ring increased the AR binding affinity. The (2S,3R) configuration of the pyrrolidine ring was favorable for the AR antagonistic activity. It was found that introduction of an amide substituent (R(1)) and a pyridin-3-yl group (Q) was effective for reducing the AR agonistic activity which appeared during the optimization of lead compound 6. Compound 54 showed potent antitumor effects against a CRPC model of LNCaP-hr cell line in a mouse xenograft, in which bicalutamide exhibited only partial suppression of tumor growth. Thus, the pyrrolidine derivatives such as 54 are novel AR antagonists, and their properties having efficacy against CRPC are distinct from those of a representative first-generation antagonist, bicalutamide.

Collaboration


Dive into the Takahito Hara's collaboration.

Top Co-Authors

Avatar

Masami Kusaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masuo Yamaoka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akihiro Tasaka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Nobuyuki Matsunaga

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Kaku

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hideo Araki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Megumi Morimoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Naoyuki Kanzaki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Satoshi Kitazawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shuichi Furuya

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge