Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobuyuki Onishi is active.

Publication


Featured researches published by Nobuyuki Onishi.


Cancer Research | 2013

xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma

Momoko Yoshikawa; Kenji Tsuchihashi; Takatsugu Ishimoto; Toshifumi Yae; Takeshi Motohara; Eiji Sugihara; Nobuyuki Onishi; Takashi Masuko; Kunio Yoshizawa; Shuichi Kawashiri; Makio Mukai; Seiji Asoda; Hiromasa Kawana; Taneaki Nakagawa; Hideyuki Saya; Osamu Nagano

The targeting of antioxidant systems that allow stem-like cancer cells to avoid the adverse consequences of oxidative stress might be expected to improve the efficacy of cancer treatment. Here, we show that head and neck squamous cell carcinoma (HNSCC) cells that express variant isoforms of CD44 (CD44v) rely on the activity of the cystine transporter subunit xCT for control of their redox status. xCT inhibition selectively induces apoptosis in CD44v-expressing tumor cells without affecting CD44v-negative differentiated cells in the same tumor. In contrast to CD44v-expressing undifferentiated cells, CD44v-negative differentiated cells manifest EGF receptor (EGFR) activation and rely on EGFR activity for their survival. Combined treatment with inhibitors of xCT-dependent cystine transport and of EGFR resulted in a synergistic reduction of EGFR-expressing HNSCC tumor growth. Thus, xCT-targeted therapy may deplete CD44v-expressing undifferentiated HNSCC cells and concurrently sensitize the remaining differentiating cells to available treatments including EGFR-targeted therapy.


Nature Communications | 2014

Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation

Hiroyuki Nobusue; Nobuyuki Onishi; Takatsune Shimizu; Eiji Sugihara; Yoshinao Oki; Yuko Sumikawa; Tatsuyuki Chiyoda; Koichi Akashi; Hideyuki Saya; Koichiro Kano

Cellular differentiation is regulated through activation and repression of defined transcription factors. A hallmark of differentiation is a pronounced change in cell shape, which is determined by dynamics of the actin cytoskeleton. Here we show that regulation of the transcriptional coactivator MKL1 (megakaryoblastic leukemia 1) by actin cytoskeleton dynamics drives adipocyte differentiation mediated by peroxisome proliferator-activated receptor γ (PPARγ), a master transcriptional regulator of adipogenesis. Induction of adipocyte differentiation results in disruption of actin stress fibres through downregulation of RhoA-ROCK signalling. The consequent rapid increase in monomeric G-actin leads to the interaction of G-actin with MKL1, which prevents nuclear translocation of MKL1 and allows expression of PPARγ followed by adipogenic differentiation. Moreover, we found that MKL1 and PPARγ act in a mutually antagonistic manner in the adipocytic differentiation programme. Our findings thus provide new mechanistic insight into the relation between the dynamics of cell shape and transcriptional regulation during cellular differentiation.


Stem Cells | 2013

IGF1 Receptor Signaling Regulates Adaptive Radioprotection in Glioma Stem Cells

Satoru Osuka; Oltea Sampetrean; Takatsune Shimizu; Isako Saga; Nobuyuki Onishi; Eiji Sugihara; Jun Okubo; Satoshi Fujita; Shingo Takano; Akira Matsumura; Hideyuki Saya

Cancer stem cells (CSCs) play an important role in disease recurrence after radiation treatment as a result of intrinsic properties such as high DNA repair capability and antioxidative capacity. It is unclear, however, how CSCs further adapt to escape the toxicity of the repeated irradiation regimens used in clinical practice. Here, we have exposed a population of murine glioma stem cells (GSCs) to fractionated radiation in order to investigate the associated adaptive changes, with the ultimate goal of identifying a targetable factor that regulates acquired radioresistance. We have shown that fractionated radiation induces an increase in IGF1 secretion and a gradual upregulation of the IGF type 1 receptor (IGF1R) in GSCs. Interestingly, IGF1R upregulation exerts a dual radioprotective effect. In the resting state, continuous IGF1 stimulation ultimately induces downregulation of Akt/extracellular‐signal‐regulated kinases (ERK) and FoxO3a activation, which results in slower proliferation and enhanced self‐renewal. In contrast, after acute radiation, the abundance of IGF1R and increased secretion of IGF1 promote a rapid shift from a latent state toward activation of Akt survival signaling, protecting GSCs from radiation toxicity. Treatment of tumors formed by the radioresistant GSCs with an IGF1R inhibitor resulted in a marked increase in radiosensitivity, suggesting that blockade of IGF1R signaling is an effective strategy to reverse radioresistance. Together, our results show that GSCs evade the damage of repeated radiation not only through innate properties but also through gradual inducement of resistance pathways and identify the dynamic regulation of GSCs by IGF1R signaling as a novel mechanism of adaptive radioprotection. STEM CELLS 2013;31:627–640


PLOS ONE | 2013

Targeting Aurora B to the Equatorial Cortex by MKlp2 Is Required for Cytokinesis

Mayumi Kitagawa; Suet Yin Sarah Fung; Nobuyuki Onishi; Hideyuki Saya; Sang Hyun Lee

Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.


Cancer Research | 2014

IGF2 Preserves Osteosarcoma Cell Survival by Creating an Autophagic State of Dormancy That Protects Cells against Chemotherapeutic Stress

Takatsune Shimizu; Eiji Sugihara; Sayaka Yamaguchi-Iwai; Sakura Tamaki; Yuko Koyama; Walied A. Kamel; Arisa Ueki; Tomoki Ishikawa; Tatsuyuki Chiyoda; Satoru Osuka; Nobuyuki Onishi; Hiroko Ikeda; Junzo Kamei; Koichi Matsuo; Yumi Fukuchi; Toshihiro Nagai; Junya Toguchida; Yoshiaki Toyama; Akihiro Muto; Hideyuki Saya

Osteosarcoma is a malignant bone tumor in children and adolescents characterized by intrinsic therapeutic resistance. The IGF2 is expressed at elevated levels in osteosarcoma after treatment with chemotherapy, prompting an examination of its functional contributions to resistance. We found that continuous exposure to IGF2 or insulin in the absence of serum created a dormant growth state in osteosarcoma cells that conferred resistance to various chemotherapeutic drugs in vitro. Mechanistic investigations revealed that this dormant state correlated with downregulation of downstream signaling by the IGF1 receptor, heightened cell survival, enhanced autophagy, and the presence of extracellular glutamine. Notably, inhibiting autophagy or depleting glutamine was sufficient to increase chemotherapeutic sensitivity in osteosarcoma xenografts in mice. Clinically, we confirmed that IGF expression levels were elevated in human osteosarcoma specimens from patients who received chemotherapy. Together, our results suggest that activation of IGF or insulin signaling preserves the survival of osteosarcoma cells under chemotherapeutic stress, providing a drug-resistant population that may engender minimal residual disease. Attenuating this survival mechanism may help overcome therapeutic resistance in osteosarcoma.


Nature Communications | 2016

Tumour resistance in induced pluripotent stem cells derived from naked mole-rats

Shingo Miyawaki; Yoshimi Kawamura; Yuki Oiwa; Atsushi Shimizu; Tsuyoshi Hachiya; Hidemasa Bono; Ikuko Koya; Yohei Okada; Tokuhiro Kimura; Yoshihiro Tsuchiya; Sadafumi Suzuki; Nobuyuki Onishi; Naoko Kuzumaki; Yumi Matsuzaki; Minoru Narita; Eiji Ikeda; Kazuo Okanoya; Ken-ichiro Seino; Hideyuki Saya; Hideyuki Okano; Kyoko Miura

The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype—ARF suppression-induced senescence (ASIS)—that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR.


Cancer Science | 2013

Twist2 functions as a tumor suppressor in murine osteosarcoma cells

Tomoki Ishikawa; Takatsune Shimizu; Arisa Ueki; Sayaka I. Yamaguchi; Nobuyuki Onishi; Eiji Sugihara; Shinji Kuninaka; Takeshi Miyamoto; Hideo Morioka; Robert Nakayama; Eisuke Kobayashi; Yoshiaki Toyama; Yo Mabuchi; Yumi Matsuzaki; Rui Yamaguchi; Satoru Miyano; Hideyuki Saya

The epithelial–mesenchymal transition (EMT) contributes to the malignant progression of cancer cells including acquisition of the ability to undergo metastasis. However, whereas EMT‐related transcription factors (EMT‐TF) are known to play an important role in the malignant progression of epithelial tumors, their role in mesenchymal tumors remains largely unknown. We show that expression of the gene for Twist2 is downregulated in human osteosarcoma and correlates inversely with tumorigenic potential in mouse osteosarcoma. Forced expression of Twist2 in highly tumorigenic murine osteosarcoma cells induced a slight inhibition of cell growth in vitro but markedly suppressed tumor formation in vivo. Conversely, knockdown of Twist2 in osteosarcoma cells with a low tumorigenic potential promoted tumor formation in vivo, suggesting that Twist2 functions as a tumor suppressor in osteosarcoma cells. Furthermore, Twist2 induced expression of fibulin‐5, which has been reported as a tumor suppressor. Medium conditioned by mouse osteosarcoma cells overexpressing Twist2 inhibited expression of the MMP9 gene as well as invasion in mouse embryonic fibroblasts, and forced expression of Twist2 in osteosarcoma cells suppressed MMP9 gene expression in tumor tissue. Data from the present study suggest that Twist2 inhibits formation of a microenvironment conducive to tumor growth and thereby attenuates tumorigenesis in osteosarcoma.


Cancer Research | 2013

Acquired expression of NFATc1 downregulates E-cadherin and promotes cancer cell invasion

Tsukasa Oikawa; Atsuko Nakamura; Nobuyuki Onishi; Taketo Yamada; Koichi Matsuo; Hideyuki Saya

NFATc1 is a transcription factor that regulates T-cell development, osteoclastogenesis, and macrophage function. Given that T cells, osteoclasts, and macrophages in the tumor microenvironment are thought to modulate tumor progression, tumor cells may acquire NFATc1 expression through fusion with these NFATc1-expressing normal cells. We here revealed that a small proportion of tumor cells in human carcinoma specimens expressed NFATc1. To investigate the consequences of NFATc1 acquisition by tumor cells, we established A549 and MCF7 cell lines expressing a constitutively active form of NFATc1 (NFATc1CA) in an inducible manner. The expression of NFATc1CA promoted cancer cell invasion in association with changes in cell morphology. Analysis of gene expression and RNA interference experiments revealed that NFATc1CA suppressed E-cadherin expression by upregulating the transcriptional repressors Snail and Zeb1 in a manner independent of TGF-β signaling. Induced expression of NFATc1CA also downregulated E-cadherin expression and increased invasive activity in tumor xenografts in vivo. Our results thus suggest that the acquisition of NFATc1 expression contributes to tumor progression.


Cancer Research | 2016

The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(

Kenji Tsuchihashi; Shogo Okazaki; Mitsuyo Ohmura; Miyuki Ishikawa; Oltea Sampetrean; Nobuyuki Onishi; Hiroaki Wakimoto; Momoko Yoshikawa; Ryo Seishima; Yoshimi Iwasaki; Takayuki Morikawa; Shinya Abe; Ayumi Takao; Misato Shimizu; Takashi Masuko; Motoo Nagane; Frank B. Furnari; Tetsu Akiyama; Makoto Suematsu; Eishi Baba; Koichi Akashi; Hideyuki Saya; Osamu Nagano

Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.


PLOS ONE | 2012

Up-Regulation of Imp3 Confers In Vivo Tumorigenicity on Murine Osteosarcoma Cells

Arisa Ueki; Takatsune Shimizu; Kenta Masuda; Sayaka I. Yamaguchi; Tomoki Ishikawa; Eiji Sugihara; Nobuyuki Onishi; Shinji Kuninaka; Keita Miyoshi; Akihiro Muto; Yoshiaki Toyama; Kouji Banno; Daisuke Aoki; Hideyuki Saya

Osteosarcoma is a high-grade malignant bone tumor that manifests ingravescent clinical behavior. The intrinsic events that confer malignant properties on osteosarcoma cells have remained unclear, however. We previously established two lines of mouse osteosarcoma cells: AX cells, which are able to form tumors in syngeneic mice, and AXT cells, which were derived from such tumors and acquired an increased tumorigenic capacity during tumor development. We have now identified Igf2 mRNA-binding protein3 (Imp3) as a key molecule responsible for this increased tumorigenicity of AXT cells in vivo. Imp3 is consistently up-regulated in tumors formed by AX cells, and its expression in these cells was found to confer malignant properties such as anchorage-independent growth, loss of contact inhibition, and escape from anoikis in vitro. The expression level of Imp3 also appeared directly related to tumorigenic ability in vivo which is the critical determination for tumor-initiating cells. The effect of Imp3 on tumorigenicity of osteosarcoma cells did not appear to be mediated through Igf2-dependent mechanism. Our results implicate Imp3 as a key regulator of stem-like tumorigenic characteristics in osteosarcoma cells and as a potential therapeutic target for this malignancy.

Collaboration


Dive into the Nobuyuki Onishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge