Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oltea Sampetrean is active.

Publication


Featured researches published by Oltea Sampetrean.


Stem Cells | 2013

IGF1 Receptor Signaling Regulates Adaptive Radioprotection in Glioma Stem Cells

Satoru Osuka; Oltea Sampetrean; Takatsune Shimizu; Isako Saga; Nobuyuki Onishi; Eiji Sugihara; Jun Okubo; Satoshi Fujita; Shingo Takano; Akira Matsumura; Hideyuki Saya

Cancer stem cells (CSCs) play an important role in disease recurrence after radiation treatment as a result of intrinsic properties such as high DNA repair capability and antioxidative capacity. It is unclear, however, how CSCs further adapt to escape the toxicity of the repeated irradiation regimens used in clinical practice. Here, we have exposed a population of murine glioma stem cells (GSCs) to fractionated radiation in order to investigate the associated adaptive changes, with the ultimate goal of identifying a targetable factor that regulates acquired radioresistance. We have shown that fractionated radiation induces an increase in IGF1 secretion and a gradual upregulation of the IGF type 1 receptor (IGF1R) in GSCs. Interestingly, IGF1R upregulation exerts a dual radioprotective effect. In the resting state, continuous IGF1 stimulation ultimately induces downregulation of Akt/extracellular‐signal‐regulated kinases (ERK) and FoxO3a activation, which results in slower proliferation and enhanced self‐renewal. In contrast, after acute radiation, the abundance of IGF1R and increased secretion of IGF1 promote a rapid shift from a latent state toward activation of Akt survival signaling, protecting GSCs from radiation toxicity. Treatment of tumors formed by the radioresistant GSCs with an IGF1R inhibitor resulted in a marked increase in radiosensitivity, suggesting that blockade of IGF1R signaling is an effective strategy to reverse radioresistance. Together, our results show that GSCs evade the damage of repeated radiation not only through innate properties but also through gradual inducement of resistance pathways and identify the dynamic regulation of GSCs by IGF1R signaling as a novel mechanism of adaptive radioprotection. STEM CELLS 2013;31:627–640


Cancer Science | 2009

Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model

Kazuharu Kai; Osamu Nagano; Eiji Sugihara; Yoshimi Arima; Oltea Sampetrean; Takatsugu Ishimoto; Masaya Nakanishi; Naoto T. Ueno; Hirotaka Iwase; Hideyuki Saya

The cancer stem cell (CSC) model, in which a small population of cells within a tumor possesses the ability to self‐renew and reconstitute the phenotype of primary tumor, has gained wide acceptance based on evidence over the past decade. It has also been reported that cancer cell lines contain a CSC subpopulation. However, phenotypic differences between CSCs and non‐CSCs in cancer cell lines are not better defined than in primary tumors. Furthermore, some cell lines do not have a CSC population, revealed as a side population and expression of CD133. Thus, the identification of CSCs in cancer cell lines remains elusive. Here, we investigated the CSC hierarchy within HCT116 colon cancer cells, which do not have a CD133‐positive subpopulation. We examined the expression of alternative CSC markers epithelial specific antigen (ESA) and CD44 in floating‐sphere‐derived cells, which are known to be the cells of enriching CSCs. Sphere‐derived HCT116 cells exhibited heterogeneous expression of ESA and CD44. The two major subpopulations of HCT116 sphere cells (ESAlowCD44−/low and ESAhighCD44high) exhibited a biological/proliferative hierarchy of sphere‐forming and soft agar colony‐forming activity. However, there was no difference between the two subpopulations in the incidence of xenograft tumors. When ESAlowCD44−/low cells were allowed to aggregate and re‐form floating‐spheres, the biological/proliferative hierarchy of parental HCT116 spheres was reconstituted, in terms of ESA and CD44 expression. Thus, HCT116 cells have plasticity when they are set in floating‐spheres, suggesting that maintenance of the HCT116 cell line conforms to a stochastic model, not a CSC model. (Cancer Sci 2009; 100: 2275–2282)


Brain Tumor Pathology | 2013

Characteristics of glioma stem cells

Oltea Sampetrean; Hideyuki Saya

The cancer stem cell theory postulates that tumors are sustained by a select cell population with specific features, such as self-renewal ability and the capacity to give rise to a heterogeneous mass of tumor cells. The existence of such cells has been demonstrated for glioblastoma, with these cells being referred to as glioma stem cells (GSCs). Glioblastomas are notoriously heterogeneous tumors, however, and the isolation and characterization of their stem cells will require further investigations. Furthermore, the lack of unequivocal markers for GSCs and a partial overlap in characteristics with other cells often lead to confusion. Here, we review the characteristics necessary for a glioma cell to be considered a stem cell, and we adopt our murine glioblastoma model based on genetically modified neural stem cells to illustrate and discuss the GSC concept.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression

David Kozono; Jie Li; Masayuki Nitta; Oltea Sampetrean; David D. Gonda; Deepa Kushwaha; Dmitry Merzon; Valya Ramakrishnan; Shan Zhu; Kaya Zhu; Hiroko Matsui; Olivier Harismendy; Wei Hua; Ying Mao; Chang-Hyuk Kwon; Hideyuki Saya; Ichiro Nakano; Donald P. Pizzo; Scott R. VandenBerg; Clark C. Chen

Significance Glioblastoma is the most common type of adult brain cancer, with near-uniform fatality within 2 y of diagnosis. Therapeutic failure is thought to be related to small subpopulations of cells that exhibit tumorigenicity, the cellular capacity to reconstitute the entire tumor mass. One fundamental issue is whether tumorigenicity exists within a static subpopulation of cells or whether the capacity is stochastically acquired. We provide evidence that tumorigenicity is a cellular property that is durable yet undergoes low-frequency stochastic changes. We showed that these changes are driven by lysine-specific demethylase 1 (LSD1)-mediated epigenetic (heritable non-DNA sequence-altering) modifications that impact expression of key transcription factors, which in turn govern transitions between tumorigenic states. These findings harbor implications for glioblastoma therapeutic development. The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.


Neuro-oncology | 2014

Integrated analysis identifies different metabolic signatures for tumor-initiating cells in a murine glioblastoma model

Isako Saga; Shunsuke Shibao; Jun Okubo; Satoru Osuka; Yusuke Kobayashi; Sachiko Yamada; Satoshi Fujita; Kenichi Urakami; Masatoshi Kusuhara; Kazunari Yoshida; Hideyuki Saya; Oltea Sampetrean

BACKGROUND The metabolic preference of malignant glioma for glycolysis as an energy source is a potential therapeutic target. As a result of the cellular heterogeneity of these tumors, however, the relation between glycolytic preference, tumor formation, and tumor cell clonogenicity has remained unknown. To address this issue, we analyzed the metabolic profiles of isogenic glioma-initiating cells (GICs) in a mouse model. METHODS GICs were established by overexpression of H-Ras(V12) in Ink4a/Arf-null neural stem cells. Subpopulations of these cells were obtained by single-cell cloning, and clones differing in extracellular acidification potential were assessed for metabolic characteristics. Tumors formed after intracranial implantation of these clones in mice were examined for pathological features of glioma and expression of glycolytic enzymes. RESULTS Malignant transformation of neural stem cells resulted in a shift in metabolism characterized by an increase in lactic acid production. However, isogenic clonal populations of GICs manifested pronounced differences in glucose and oxygen consumption, lactate production, and nucleoside levels. These differences were paralleled by differential expression of glycolytic enzymes such as hexokinase 2 and pyruvate kinase M2, with this differential expression also being evident in tumors formed by these clones in vivo. CONCLUSIONS The metabolic characteristics of glioma cells appear early during malignant transformation and persist until the late stages of tumor formation. Even isogenic clones may be heterogeneous in terms of metabolic features, however, suggesting that a more detailed understanding of the metabolic profile of glioma is imperative for effective therapeutic targeting.


Cancer Research | 2016

The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(

Kenji Tsuchihashi; Shogo Okazaki; Mitsuyo Ohmura; Miyuki Ishikawa; Oltea Sampetrean; Nobuyuki Onishi; Hiroaki Wakimoto; Momoko Yoshikawa; Ryo Seishima; Yoshimi Iwasaki; Takayuki Morikawa; Shinya Abe; Ayumi Takao; Misato Shimizu; Takashi Masuko; Motoo Nagane; Frank B. Furnari; Tetsu Akiyama; Makoto Suematsu; Eishi Baba; Koichi Akashi; Hideyuki Saya; Osamu Nagano

Extracellular free amino acids contribute to the interaction between a tumor and its microenvironment through effects on cellular metabolism and malignant behavior. System xc(-) is composed of xCT and CD98hc subunits and functions as a plasma membrane antiporter for the uptake of extracellular cystine in exchange for intracellular glutamate. Here, we show that the EGFR interacts with xCT and thereby promotes its cell surface expression and function in human glioma cells. EGFR-expressing glioma cells manifested both enhanced antioxidant capacity as a result of increased cystine uptake, as well as increased glutamate, which promotes matrix invasion. Imaging mass spectrometry also revealed that brain tumors formed in mice by human glioma cells stably overexpressing EGFR contained higher levels of reduced glutathione compared with those formed by parental cells. Targeted inhibition of xCT suppressed the EGFR-dependent enhancement of antioxidant capacity in glioma cells, as well as tumor growth and invasiveness. Our findings establish a new functional role for EGFR in promoting the malignant potential of glioma cells through interaction with xCT at the cell surface. Cancer Res; 76(10); 2954-63. ©2016 AACR.


Scientific Reports | 2016

Generation of heterozygous fibrillin-1 mutant cloned pigs from genome-edited foetal fibroblasts

Kazuhiro Umeyama; Kota Watanabe; Masahito Watanabe; Keisuke Horiuchi; Kazuaki Nakano; Masateru Kitashiro; Hitomi Matsunari; Tokuhiro Kimura; Yoshimi Arima; Oltea Sampetrean; Masaki Nagaya; Masahiro Saito; Hideyuki Saya; Kenjiro Kosaki; Hiroshi Nagashima; Morio Matsumoto

Marfan syndrome (MFS) is an autosomal dominant genetic disease caused by abnormal formation of the extracellular matrix with an incidence of 1 in 3, 000 to 5, 000. Patients with Marfan syndrome experience poor quality of life caused by skeletal disorders such as scoliosis, and they are at high risk of sudden death from cardiovascular impairment. Suitable animal models of MFS are essential for conquering this intractable disease. In particular, studies employing pig models will likely provide valuable information that can be extrapolated to humans because of the physiological and anatomical similarities between the two species. Here we describe the generation of heterozygous fibrillin-1 (FBN1) mutant cloned pigs (+/Glu433AsnfsX98) using genome editing and somatic cell nuclear transfer technologies. The FBN1 mutant pigs exhibited phenotypes resembling those of humans with MFS, such as scoliosis, pectus excavatum, delayed mineralization of the epiphysis and disrupted structure of elastic fibres of the aortic medial tissue. These findings indicate the value of FBN1 mutant pigs as a model for understanding the pathogenesis of MFS and for developing treatments.


Oncotarget | 2016

Histopathological investigation of glioblastomas resected under bevacizumab treatment

Ryota Tamura; Toshihide Tanaka; Keisuke Miyake; Yusuke Tabei; Kentaro Ohara; Oltea Sampetrean; Maya Kono; Katsuhiro Mizutani; Yohei Yamamoto; Yuichi Murayama; Takashi Tamiya; Kazunari Yoshida; Hikaru Sasaki

To date, no clinical observations have been reported for histopathological changes in human gliomas under antiangiogenic treatment. We collected six glioblastomas resected under bevacizumab treatment. Histopathological investigation was performed by hematoxilyn-eosin staining and immunohistochemistry for CD34, VEGF, VEGFR1/2, HIF-1α, CA9, and nestin as compared to eleven control glioblastomas to assess the differences in histological features, microvessel density, expression of VEGF and its receptors, tumor oxygenation, and status of glioma stem-like cells. In the six tumors resected under bevacizumab, microvascular proliferation was absent, and microvessel density had significantly decreased compared with that of the controls. The expressions of VEGF and its receptors were downregulated in two cases of partial response. HIF-1α or CA9 expression was decreased in five of the six tumors, whereas the decreased expression of these markers was noted in only one of the 11 control glioblastomas. The expression of nestin significantly decreased in the six tumors compared with that of the controls, with the remaining nestin-positive cells being relatively concentrated around vessels. We provide the first clinicopathological evidence that antiangiogenic therapy induces the apparent normalization of vascular structure, decrease of microvessel density, and improvement of tumor oxygenation in glioblastomas. These in situ observations will help to optimize therapy.


Integrative Biology | 2017

Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform

Yuta Chonan; Sotaro Taki; Oltea Sampetrean; Hideyuki Saya; Ryo Sudo

Glioblastoma (GBM) is a highly invasive primary brain tumor that displays cellular heterogeneity, which is composed of glioma initiating cells (GICs) and their differentiated progeny. GICs play an important role in driving aggressive invasion. In particular, the interaction between GICs and blood vessels is critical because blood vessels are known to serve as routes for the invasion of GICs. However, the effect of endothelial cells on the three-dimensional (3D) invasion process of GICs as well as the spatial relationship between GICs and their differentiated progeny remains unclear. Here, we utilized a microfluidic device to recapitulate the 3D brain tumor microenvironments constituted by human umbilical vein endothelial cells (HUVECs) and type I collagen. Using the device, we found that HUVECs promoted the 3D invasion of heterogeneous glioma cell populations into type I collagen gel. The invasion induced by HUVECs was predominantly preceded by cells positive for nestin, a neural stem cell marker. In contrast, cells positive for tubulin β3 (TUBB3), a differentiated cell marker, rarely preceded invasion. In addition, HUVECs induced the upregulation of TUBB3 in GICs. Finally, we found that the genes associated with invasion, such as integrins α2 and β3, were significantly upregulated in the presence of HUVECs. These results as well as the experimental approach provide valuable knowledge for the development of effective therapeutic strategies targeting the aggressive invasion of GBM.


BioMed Research International | 2017

RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis

Ryo Sato; Teppei Nakano; Mari Hosonaga; Oltea Sampetrean; Ritsuko Harigai; Takashi Sasaki; Ikuko Koya; Hideyuki Okano; Jun Kudoh; Hideyuki Saya; Yoshimi Arima

Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.

Collaboration


Dive into the Oltea Sampetrean's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge