Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noe Fernandez-Pozo is active.

Publication


Featured researches published by Noe Fernandez-Pozo.


Nucleic Acids Research | 2015

The Sol Genomics Network (SGN)—from genotype to phenotype to breeding

Noe Fernandez-Pozo; Naama Menda; Jeremy D. Edwards; Surya Saha; Isaak Y. Tecle; Susan R. Strickler; Aureliano Bombarely; Thomas Fisher-York; Anuradha Pujar; Hartmut Foerster; Aimin Yan; Lukas A. Mueller

The Sol Genomics Network (SGN, http://solgenomics.net) is a web portal with genomic and phenotypic data, and analysis tools for the Solanaceae family and close relatives. SGN hosts whole genome data for an increasing number of Solanaceae family members including tomato, potato, pepper, eggplant, tobacco and Nicotiana benthamiana. The database also stores loci and phenotype data, which researchers can upload and edit with user-friendly web interfaces. Tools such as BLAST, GBrowse and JBrowse for browsing genomes, expression and map data viewers, a locus community annotation system and a QTL analysis tools are available. A new tool was recently implemented to improve Virus-Induced Gene Silencing (VIGS) constructs called the SGN VIGS tool. With the growing genomic and phenotypic data in the database, SGN is now advancing to develop new web-based breeding tools and implement the code and database structure for other species or clade-specific databases.


BMC Bioinformatics | 2010

SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read

Juan Falgueras; Antonio J. Lara; Noe Fernandez-Pozo; Francisco R. Cantón; Guillermo Pérez-Trabado; M. Gonzalo Claros

BackgroundHigh-throughput automated sequencing has enabled an exponential growth rate of sequencing data. This requires increasing sequence quality and reliability in order to avoid database contamination with artefactual sequences. The arrival of pyrosequencing enhances this problem and necessitates customisable pre-processing algorithms.ResultsSeqTrim has been implemented both as a Web and as a standalone command line application. Already-published and newly-designed algorithms have been included to identify sequence inserts, to remove low quality, vector, adaptor, low complexity and contaminant sequences, and to detect chimeric reads. The availability of several input and output formats allows its inclusion in sequence processing workflows. Due to its specific algorithms, SeqTrim outperforms other pre-processors implemented as Web services or standalone applications. It performs equally well with sequences from EST libraries, SSH libraries, genomic DNA libraries and pyrosequencing reads and does not lead to over-trimming.ConclusionsSeqTrim is an efficient pipeline designed for pre-processing of any type of sequence read, including next-generation sequencing. It is easily configurable and provides a friendly interface that allows users to know what happened with sequences at every pre-processing stage, and to verify pre-processing of an individual sequence if desired. The recommended pipeline reveals more information about each sequence than previously described pre-processors and can discard more sequencing or experimental artefacts.


Nature plants | 2016

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida

Aureliano Bombarely; Michel Moser; Avichai Moshe Amrad; Manzhu Bao; Laure Bapaume; Cornelius S. Barry; Mattijs Bliek; Maaike R. Boersma; Lorenzo Borghi; Rémy Bruggmann; Marcel Bucher; Nunzio D'Agostino; Kevin M. Davies; Uwe Druege; Natalia Dudareva; Marcos Egea-Cortines; Massimo Delledonne; Noe Fernandez-Pozo; Philipp Franken; Laurie Grandont; J. S. Heslop-Harrison; Jennifer Hintzsche; Mitrick A. Johns; Ronald Koes; Xiaodan Lv; Eric Lyons; Diwa Malla; Enrico Martinoia; Neil S. Mattson; Patrice Morel

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


Biology | 2012

Why Assembling Plant Genome Sequences Is So Challenging

Manuel G. Claros; Rocío Bautista; Darío Guerrero-Fernández; Hicham Benzerki; Pedro Seoane; Noe Fernandez-Pozo

In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.


Plant Physiology | 2015

Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays

Vered Tzin; Noe Fernandez-Pozo; Annett Richter; Eric A. Schmelz; Matthias Schoettner; Martin Schäfer; Kevin R. Ahern; Lisa N. Meihls; Harleen Kaur; Alisa Huffaker; Naoki Mori; Joerg Degenhardt; Lukas A. Mueller; Georg Jander

A transcriptomic and metabolomic profiling time course of maize foliar responses to aphid feeding identifies genes for the synthesis of benzoxazinoids, terpenes, and other induced defense metabolites. As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.


BMC Genomics | 2014

De novo assembly, characterization and functional annotation of Senegalese sole (Solea senegalensis) and common sole (Solea solea) transcriptomes: integration in a database and design of a microarray

Hicham Benzekri; Paula Armesto; Xavier Cousin; Mireia Rovira; Diego Crespo; Manuel Alejandro Merlo; David Mazurais; Rocío Bautista; Darío Guerrero-Fernández; Noe Fernandez-Pozo; Marian Ponce; Carlos Infante; José Zambonino; Sabine Nidelet; Marta Gut; Laureana Rebordinos; Josep V. Planas; Marie-Laure Bégout; M. Gonzalo Claros; Manuel Manchado

BackgroundSenegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution.ResultsA comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB.ConclusionsTranscriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species.


BMC Genomics | 2011

EuroPineDB: a high-coverage web database for maritime pine transcriptome

Noe Fernandez-Pozo; Javier Canales; Darío Guerrero-Fernández; David P. Villalobos; Sara M. Díaz-Moreno; Rocío Bautista; Arantxa Flores-Monterroso; M. Ángeles Guevara; Pedro Perdiguero; Carmen Collada; M. Teresa Cervera; Álvaro Soto; Ricardo J. Ordás; Francisco R. Cantón; Concepción Ávila; Francisco M. Cánovas; M. Gonzalo Claros

BackgroundPinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases.DescriptionEuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided.ConclusionsThe EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome.


Genome Biology | 2014

Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins

Marina A. Pombo; Yi Zheng; Noe Fernandez-Pozo; Diane M. Dunham; Zhangjun Fei; Gregory B. Martin

BackgroundPlants have two related immune systems to defend themselves against pathogen attack. Initially, pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses.ResultsWe apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling.ConclusionsUsing RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.


Molecular Plant | 2015

The SGN VIGS Tool: User-Friendly Software to Design Virus-Induced Gene Silencing (VIGS) Constructs for Functional Genomics

Noe Fernandez-Pozo; Hernan G. Rosli; Gregory B. Martin; Lukas A. Mueller

Virus-induced gene silencing (VIGS) is a fast and powerful method to study gene function in plants (Burch-Smith et al., 2004). It is based on plant defense mechanisms against viral gene replication and allows high-throughput silencing of genes of interest (Senthil-Kumar and Mysore, 2014). The molecular mechanisms involved in post-transcriptional gene silencing (PTGS) have been studied intensively, and its steps are well known. The silencing process begins with the recognition through Dicer-like ribonucleases (DCL) of double-stranded RNA (dsRNA) that is generated during viral replication.


Molecular Plant-microbe Interactions | 2014

The Tomato Kinome and the Tomato Kinase Library ORFeome: Novel Resources for the Study of Kinases and Signal Transduction in Tomato and Solanaceae Species

Dharmendra K. Singh; Mauricio Calviño; Elizabeth K. Brauer; Noe Fernandez-Pozo; Susan R. Strickler; Roopa Yalamanchili; Hideyuki Suzuki; Koh Aoki; Daisuke Shibata; Johannes W. Stratmann; George V. Popescu; Lukas A. Mueller; Sorina C. Popescu

Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.

Collaboration


Dive into the Noe Fernandez-Pozo's collaboration.

Top Co-Authors

Avatar

Lukas A. Mueller

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zheng

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge