Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noelle E. Selin is active.

Publication


Featured researches published by Noelle E. Selin.


Global Biogeochemical Cycles | 2008

Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition

Noelle E. Selin; Daniel J. Jacob; Robert M. Yantosca; Sarah Strode; Lyatt Jaeglé; Elsie M. Sunderland

We develop a mechanistic representation of land-atmosphere cycling in a global 3-D ocean-atmosphere model of mercury (GEOS-Chem). The resulting land-ocean-atmosphere model is used to construct preindustrial and present biogeochemical cycles of mercury, to examine the legacy of past anthropogenic emissions, to map anthropogenic enrichment factors for deposition, and to attribute mercury deposition in the United States. Land emission in the model includes prompt recycling of recently deposited mercury (600 Mg a -1 for present day), soil volatilization (550 Mg a -1 ), and evapotranspiration (550 Mg a -1 ). The spatial distribution of soil concentrations is derived from local steady state between land emission and deposition in the preindustrial simulation, augmented for the present day by a 15% increase in the soil reservoir distributed following the pattern of anthropogenic deposition. Mercury deposition and hence emission are predicted to be highest in the subtropics. Our atmospheric lifetime of mercury against deposition (0.50 year) is shorter than past estimates because of our accounting of Hg(0) dry deposition, but recycling from surface reservoirs results in an effective lifetime of 1.6 years against transfer to long-lived reservoirs in the soil and deep ocean. Present-day anthropogenic enrichment of mercury deposition exceeds a factor of 5 in continental source regions. We estimate that 68% of the deposition over the United States is anthropogenic, including 20% from North American emissions (20% primary and <1% recycled through surface reservoirs), 31% from emissions outside North America (22% primary and 9% recycled), and 16% from the legacy of anthropogenic mercury accumulated in soils and the deep ocean.


Journal of Geophysical Research | 2006

Observations of Reactive Gaseous Mercury in the Free Troposphere at the Mount Bachelor Observatory

Philip C. Swartzendruber; Daniel A. Jaffe; Eric Prestbo; Peter Weiss-Penzias; Noelle E. Selin; Rokjin J. Park; Daniel J. Jacob; Sarah Strode; Lyatt Jaeglé

August 2005. The mean mercury concentrations (at standard conditions) were 1.54 ng/m 3 (GEM), 5.2 pg/m 3 (PHg), and 43 pg/m 3 (RGM). RGM enhancements, up to 600 pg/m 3 , occurred at night and were linked to a diurnal pattern of upslope and downslope flows that mixed in boundary layer air during the day and free tropospheric air at night. During the night, RGM was inversely correlated (P < 0.0001) with CO (r = � 0.36), GEM (r = � 0.73), and H2 O( r =� 0.44), was positively correlated with ozone (r = 0.38), and could not be linked to recent anthropogenic emissions from local sources or long-range transport. Principal component analysis and a composite of change in RGM versus change in GEM during RGM enhancements indicate that a nearly quantitative shift in speciation is associated with increases in ozone and decreases in water vapor and CO. This argues that high concentrations of RGM are present in the free troposphere because of in situ oxidation of GEM to RGM. A global chemical transport model reproduces the RGM mean and diurnal pattern but underestimates the magnitude of the largest observed enhancements. Since the only modeled, in situ RGM production mechanisms are oxidation of GEM by ozone and OH, this implies that there are faster reaction rates or additional RGM production mechanisms in the free troposphere.


Environmental Research Letters | 2009

Global health and economic impacts of future ozone pollution

Noelle E. Selin; Shiliang Wu; Kyung-Min Nam; John M. Reilly; Sergey Paltsev; Ronald G. Prinn; Mort Webster

We assess the human health and economic impacts of projected 2000–2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis - Health Effects (EPPA-HE) model, in combination with results from the GEOS-Chem global tropospheric chemistry model of climate and chemistry effects of projected future emissions. We use EPPA-HE to assess the human health damages (including mortality and morbidity) caused by ozone pollution, and quantify their economic impacts in sixteen world regions. We compare the costs of ozone pollution under scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario). We estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be


Environmental Toxicology and Chemistry | 2014

Global change and mercury cycling: challenges for implementing a global mercury treaty.

Noelle E. Selin

580 billion (year 2000


Science of The Total Environment | 2014

Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

Marilena Muntean; Greet Janssens-Maenhout; Shaojie Song; Noelle E. Selin; J.G.J. Olivier; Diego Guizzardi; Rob Maas; Frank Dentener

) and that mortalities from acute exposure will exceed 2 million. We find that previous methodologies underestimate costs of air pollution by more than a third because they do not take into account the long-term, compounding effects of health costs. The economic effects of emissions changes far exceed the influence of climate alone.


Environmental Health Perspectives | 2009

Sources of Mercury Exposure for U.S. Seafood Consumers: Implications for Policy

Noelle E. Selin; Elsie M. Sunderland; Christopher D. Knightes; Robert P. Mason

The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their influence on global biogeochemical cycling of Hg. Although the conventions scope covers all major categories of atmospheric emissions, the degree to which it will affect future emissions trajectories remains unclear. A box model analysis shows that future global biogeochemical cycling under projected technological provisions would result mainly in avoided increases and that estimated differences in atmospheric concentrations resulting from policies would be on the order of 1% to 2% per year. Present experience suggests that scientific knowledge is not currently sufficient to attribute causes to changes of this magnitude. Enhancements to capacity to measure the effectiveness of the Minamata Convention are suggested, including both measurement and modeling.


Environmental Science & Technology | 2014

Progress on Understanding Atmospheric Mercury Hampered by Uncertain Measurements

Daniel A. Jaffe; Seth N. Lyman; Helen Marie Amos; Mae Sexauer Gustin; Jiaoyan Huang; Noelle E. Selin; Leonard Levin; Arnout ter Schure; Robert P. Mason; Robert W. Talbot; Andrew Rutter; Brandon Finley; Lyatt Jaeglé; Viral Shah; Crystal D. McClure; Jesse L. Ambrose; Lynne Gratz; Steven E. Lindberg; Peter Weiss-Penzias; Guey Rong Sheu; Dara Feddersen; Milena Horvat; Ashu Dastoor; Anthony J. Hynes; H.-K. Mao; Jeroen E. Sonke; F. Slemr; Jenny A. Fisher; Ralf Ebinghaus; Yanxu Zhang

The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1,287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg(0)) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg(2+)) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg(0), has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg(0) emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1°×0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can generally reproduce both spatial variations and long-term trends in total gaseous mercury concentrations and wet deposition fluxes.


Environmental Science & Technology | 2012

Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources *

Carey L. Friedman; Noelle E. Selin

Background Recent policies attempting to reduce adverse effects of methylmercury exposure from fish consumption in the United States have targeted reductions in anthropogenic emissions from U.S. sources. Objectives To analyze the prospects for future North American and international emissions controls, we assessed the potential contributions of anthropogenic, historical, and natural mercury to exposure trajectories in the U.S. population over a 40-year time horizon. Methods We used models that simulate global atmospheric chemistry (GEOS-Chem); the fate, transport, and bioaccumulation of mercury in four types of freshwater ecosystems; and mercury cycling among different ocean basins. We considered effects on mercury exposures in the U.S. population based on dietary survey information and consumption data from the sale of commercial market fish. Results Although North American emissions controls may reduce mercury exposure by up to 50% for certain highly exposed groups such as indigenous peoples in the Northeast, the potential effects of emissions controls on populations consuming marine fish from the commercial market are less certain because of limited measurements. Conclusions Despite uncertainties in the exposure pathway, results indicate that a combination of North American and international emissions controls with adaptation strategies is necessary to manage methylmercury risks across various demographic groups in the United States.


Journal of The Air & Waste Management Association | 2015

A self-consistent method to assess air quality co-benefits from U.S. climate policies

Rebecca Saari; Noelle E. Selin; Sebastian Rausch; Tammy M. Thompson

by Uncertain Measurements Daniel A. Jaffe,*,†,‡ Seth Lyman, Helen M. Amos, Mae S. Gustin, Jiaoyan Huang, Noelle E. Selin, Leonard Levin, Arnout ter Schure, Robert P. Mason, Robert Talbot, Andrew Rutter, Brandon Finley,† Lyatt Jaegle,‡ Viral Shah,‡ Crystal McClure,‡ Jesse Ambrose,† Lynne Gratz,† Steven Lindberg, Peter Weiss-Penzias, Guey-Rong Sheu, Dara Feddersen, Milena Horvat, Ashu Dastoor, Anthony J. Hynes, Huiting Mao, Jeroen E. Sonke, Franz Slemr, Jenny A. Fisher, Ralf Ebinghaus, Yanxu Zhang, and Grant Edwards⪫


Geophysical Research Letters | 2015

Oxidation of mercury by bromine in the subtropical Pacific free troposphere

Lynne E. Gratz; Jesse L. Ambrose; Daniel A. Jaffe; Viral Shah; Lyatt Jaeglé; J. Stutz; James Festa; Max Spolaor; Catalina Tsai; Noelle E. Selin; Shaojie Song; X. Zhou; Andrew J. Weinheimer; D. J. Knapp; D. D. Montzka; F. Flocke; Teresa L. Campos; Eric C. Apel; Rebecca S. Hornbrook; Nicola J. Blake; Samuel R. Hall; Geoffrey S. Tyndall; M. Reeves; D. Stechman; Meghan Stell

We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the models ability to simulate PAHs with different volatilities, we conduct analyses for phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). GEOS-Chem captures observed seasonal trends with no statistically significant difference between simulated and measured mean annual concentrations. GEOS-Chem also captures variability in observed concentrations at nonurban sites (r = 0.64, 0.72, and 0.74, for PHE, PYR, and BaP). Sensitivity simulations suggest snow/ice scavenging is important for gas-phase PAHs, and on-particle oxidation and temperature-dependency of gas-particle partitioning have greater effects on transport than irreversible partitioning or increased particle concentrations. GEOS-Chem estimates mean atmospheric lifetimes of <1 day for all three PAHs. Though corresponding half-lives are lower than the 2-day screening criterion for international policy action, we simulate concentrations at the high-Arctic station of Spitsbergen within four times observed concentrations with strong correlation (r = 0.70, 0.68, and 0.70 for PHE, PYR, and BaP). European and Russian emissions combined account for ~80% of episodic high-concentration events at Spitsbergen.

Collaboration


Dive into the Noelle E. Selin's collaboration.

Top Co-Authors

Avatar

Lyatt Jaeglé

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaojie Song

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sarah Strode

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Jacob

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

Sergey Paltsev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge