Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nomeli P. Nunez is active.

Publication


Featured researches published by Nomeli P. Nunez.


Cell | 2006

Genomic instability and aging-like phenotype in the absence of mammalian SIRT6

Raul Mostoslavsky; Katrin F. Chua; David B. Lombard; Wendy W. Pang; Miriam R. Fischer; Lionel Gellon; Pingfang Liu; Gustavo Mostoslavsky; Sonia Franco; Michael M. Murphy; Kevin D. Mills; Parin Patel; Joyce T. Hsu; Andrew L. Hong; Ethan Ford; Hwei Ling Cheng; Caitlin Kennedy; Nomeli P. Nunez; Roderick T. Bronson; David Frendewey; Wojtek Auerbach; David M. Valenzuela; Margaret Karow; Michael O. Hottiger; Stephen D. Hursting; J. Carl Barrett; Leonard Guarente; Richard C. Mulligan; Bruce Demple; George D. Yancopoulos

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Cancer Research | 2007

Inhibition of Prostate Cancer Growth by Muscadine Grape Skin Extract and Resveratrol through Distinct Mechanisms

Tamaro Hudson; Diane K. Hartle; Stephen D. Hursting; Nomeli P. Nunez; Thomas T.Y. Wang; Heather A. Young; Praveen R. Arany; Jeffrey E. Green

The phytochemical resveratrol contained in red grapes has been shown to inhibit prostate cancer cell growth, in part, through its antioxidant activity. Muscadine grapes contain unique phytochemical constituents compared with other grapes and are potentially a source for novel compounds with antitumor activities. We compared the antitumor activities of muscadine grape skin extract (MSKE), which we show contains no resveratrol, with that of resveratrol using primary cultures of normal prostate epithelial cells (PrEC) and the prostate cancer cell lines RWPE-1, WPE1-NA22, WPE1-NB14, and WPE1-NB26, representing different stages of prostate cancer progression. MSKE significantly inhibited tumor cell growth in all transformed prostate cancer cell lines but not PrEC cells. Prostate tumor cell lines, but not PrEC cells, exhibited high rates of apoptosis in response to MSKE through targeting of the phosphatidylinositol 3-kinase-Akt and mitogen-activated protein kinase survival pathways. The reduction in Akt activity by MSKE is mediated through a reduction in Akt transcription, enhanced proteosome degradation of Akt, and altered levels of DJ-1, a known regulator of PTEN. In contrast to MSKE, resveratrol did not induce apoptosis in this model but arrested cells at the G(1)-S phase transition of the cell cycle associated with increased expression of p21 and decreased expression of cyclin D1 and cyclin-dependent kinase 4 proteins. These results show that MSKE and resveratrol target distinct pathways to inhibit prostate cancer cell growth in this system and that the unique properties of MSKE suggest that it may be an important source for further development of chemopreventive or therapeutic agents against prostate cancer.


Nutrition Journal | 2009

Differential susceptibility to obesity between male, female and ovariectomized female mice

Jina Hong; Renee E Stubbins; Rebekah R. Smith; Alison E. Harvey; Nomeli P. Nunez

BackgroundThe prevalence of obesity has increased dramatically. A direct comparison in the predisposition to obesity between males, premenopausal females, and postmenopausal females with various caloric intakes has not been made. To determine the effects of sex and ovarian hormones on the susceptibility to obesity, we conducted laboratory studies with mice. To eliminate confounders that can alter body weight gain, such as age and food consumption; we used mice with the same age and controlled the amount of calories they consumed.MethodsWe determined sex-specific susceptibility to obesity between male, non-ovariectomized female, and ovariectomized female mice. To compare susceptibility to gaining body weight between males and females, animals from each sex were exposed to either a 30% calorie-restricted, low-fat (5% fat), or high-fat (35% fat) diet regimen. To establish the role of ovarian hormones in weight gain, the ovaries were surgically removed from additional female mice, and then were exposed to the diets described above. Percent body fat and percent lean mass in the mice were determined by dual energy x-ray absorptiometry (DEXA).ResultsIn all three diet categories, male mice had a greater propensity of gaining body weight than female mice. However, ovariectomy eliminated the protection of female mice to gaining weight; in fact, ovariectomized female mice mimicked male mice in their susceptibility to weight gain. In summary, results show that male mice are more likely to become obese than female mice and that the protection against obesity in female mice is eliminated by ovariectomy.ConclusionUnderstanding metabolic differences between males and females may allow the discovery of better preventive and treatment strategies for diseases associated with body weight such as cancer and cardiovascular disease.


Cancer Research | 2007

The Obesity-Cancer Link: Lessons Learned from a Fatless Mouse

Stephen D. Hursting; Nomeli P. Nunez; Lyuba Varticovski; Charles Vinson

Current dogma suggests that the positive correlation between obesity and cancer is driven by white adipose tissue that accompanies obesity, possibly through excess secretion of adipokines. Recent studies in fatless A-Zip/F1 mice, which have undetectable adipokine levels but display accelerated tumor formation, suggest that adipokines are not required for the enhanced tumor development. The A-Zip/F-1 mice are also diabetic and display elevated circulating levels of other factors frequently associated with obesity (insulin, insulin-like growth factor-1, and proinflammatory cytokines) and activation of several signaling pathways associated with carcinogenesis. In view of this information, the risk factors underlying the obesity-cancer link need to be revisited. We postulate that the pathways associated with insulin resistance and inflammation, rather than adipocyte-derived factors, may represent key prevention and therapeutic targets for disrupting the obesity-cancer link.


Best Practice & Research Clinical Endocrinology & Metabolism | 2008

Reducing the weight of cancer: mechanistic targets for breaking the obesity–carcinogenesis link

Stephen D. Hursting; Laura M. Lashinger; Karrie Wheatley; Connie J. Rogers; Lisa H. Colbert; Nomeli P. Nunez; Susan N. Perkins

The prevalence of obesity, an established epidemiologic risk factor for many cancers, has risen steadily for the past several decades in the US. The increasing rates of obesity among children are especially alarming and suggest continuing increases in the rates of obesity-related cancers for many years to come. Unfortunately, the mechanisms underlying the association between obesity and cancer are not well understood. In particular, the effects on the carcinogenesis process and mechanistic targets of interventions that modulate energy balance, such as reduced-calorie diets and physical activity, have not been well characterized. The purpose of this review is to provide a strong foundation for the translation of mechanism-based research in this area by describing key animal and human studies of energy balance modulations involving diet or physical activity and by focusing on the interrelated pathways affected by alterations in energy balance. Particular attention is placed on signaling through the insulin and insulin-like growth factor-1 receptors, including components of the Akt and mammalian target of rapamycin (mTOR) signaling pathways downstream of these growth factor receptors. These pathways have emerged as potential targets for disrupting the obesity-cancer link. The ultimate goal of this work is to provide the missing mechanistic information necessary to identify targets for the prevention and control of cancers related to or caused by excess body weight.


Diabetes, Obesity and Metabolism | 2012

Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance

Renee E Stubbins; Kristina Najjar; Valerie B. Holcomb; Jina Hong; Nomeli P. Nunez

Aims: Obesity is associated with insulin resistance, liver steatosis and low‐grade inflammation. The role of oestrogen in sex differences in the above co‐morbidities is not fully understood. Our aim was to assess the role oestrogen has in modulating adipocyte size, adipose tissue oxidative stress, inflammation, insulin resistance and liver steatosis.


Nutrition and Cancer | 2008

Obesity Accelerates Mouse Mammary Tumor Growth in the Absence of Ovarian Hormones

Nomeli P. Nunez; Susan N. Perkins; Nicole C. P. Smith; David Berrigan; David M. Berendes; Lyuba Varticovski; J. Carl Barrett; Stephen D. Hursting

Obesity increases incidence and mortality of breast cancer in postmenopausal women. Mechanisms underlying this association are poorly understood. Suitable animal models are needed to elucidate potential mechanisms for this association. To determine the effects of obesity on mammary tumor growth, nonovariectomized and ovariectomized C57BL/6 mice of various body weights (lean, overweight, and obese) were implanted subcutaneously with mammary tumor cells from syngeneic Wnt-1 transgenic mice. In mice, the lean phenotype was associated with reduced Wnt-1 tumor growth regardless of ovarian hormone status. Ovariectomy delayed Wnt-1 tumor growth consistent with the known hormone responsiveness of these tumors. However, obesity accelerated tumor growth in ovariectomized but not in nonovariectomized animals. Diet-induced obesity in a syngeneic mouse model of breast cancer enhanced tumor growth, specifically in the absence of ovarian hormones. These results support epidemiological evidence that obesity is associated with increased breast cancer incidence and mortality in postmenopausal but not premenopausal women. In contrast, maintaining a lean body weight phenotype was associated with reduced Wnt-1 tumor growth regardless of ovarian hormone status.


Cancer Research | 2006

Accelerated Tumor Formation in a Fatless Mouse with Type 2 Diabetes and Inflammation

Nomeli P. Nunez; Won Jun Oh; Julian Rozenberg; Chris Perella; Miriam R. Anver; J. Carl Barrett; Susan N. Perkins; David Berrigan; Jaideep Moitra; Lyuba Varticovski; Stephen D. Hursting; Charles Vinson

Epidemiologic studies show a positive association between obesity and cancer risk. In addition to increased body adiposity and secretion of fat-derived hormones, obesity is also linked to insulin resistance, type 2 diabetes, and chronic inflammation. We used the fatless A-ZIP/F-1 transgenic mouse to dissociate the relative role of each of these underlying factors in the development of cancer. These mice are unique in that they do not have white fat but do develop type 2 diabetes. In two cancer models, the classic two-stage skin carcinogenesis protocol and the C3(1)/T-Ag transgenic mouse mammary tumor model, A-ZIP/F-1 mice displayed higher tumor incidence, tumor multiplicity, and decreased tumor latency than wild-type mice. We examined circulating levels of adipokines, growth factors, and cytokines. As expected, adipokines (i.e., leptin, adiponectin, and resistin) were undetectable or found at very low levels in the blood of fatless mice. However, insulin, insulin-like growth factor-I, growth hormone, vascular endothelial growth factor, and proinflammatory Th2 cytokines, such as interleukin (IL)-1beta, IL-4, and IL-6, were elevated in A-ZIP/F-1 mice. Additionally, we examined multiple phosphorylated proteins (i.e., protein kinase B/Akt and ErbB2/HER-2 kinase) associated with cancer development. Results show that many of these phosphorylated proteins were activated specifically in the A-ZIP/F-1 skin but not in the wild-type skin. These findings suggest that adipokines are not required for the promotion of tumor development and thus contradict the epidemiologic data linking obesity to carcinogenesis. We postulate that insulin resistance and inflammation are responsible for the positive correlation with cancer observed in A-ZIP/F-1 mice.


Obesity | 2007

Extreme obesity reduces bone mineral density: complementary evidence from mice and women.

Nomeli P. Nunez; Catherine L. Carpenter; Susan N. Perkins; David Berrigan; S. Victoria Jaque; Sue A. Ingles; Leslie Bernstein; Michele R. Forman; J. Carl Barrett; Stephen D. Hursting

Objective: To evaluate the effects of body adiposity on bone mineral density in the presence and absence of ovarian hormones in female mice and postmenopausal women.


Cancer Research | 2010

Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis

Yingjie Wu; Pnina Brodt; Hui Sun; Wilson Mejia; Ruslan Novosyadlyy; Nomeli P. Nunez; Xiaoli Chen; Arnulfo Mendoza; Sung Hyeok Hong; Chand Khanna; Shoshana Yakar

Among the mechanisms implicated in the tumor-promoting effects of obesity, signaling by insulin-like growth factor-I (IGF-I) and insulin has received considerable attention. However, the emerging realization that obesity is associated with chronic inflammation has prompted other consideration of how the IGF-I axis may participate in cancer progression. In the present study, we used two mouse models of chronic (LID) and inducible (iLID) igf-1 gene deficiency in the liver to investigate the role of IGF-I in regulating the host microenvironment and colorectal carcinoma growth and metastasis in obese mice. Obese mice had a heightened inflammatory response in the liver, which was abolished in mice with chronic IGF-I deficiency (LID). In control animals changes to the hepatic microenvironment associated with obesity sustained the presence of tumor cells in the liver and increased the incidence of hepatic metastases after intrasplenic/portal inoculation of colon carcinoma cells. These changes did not occur in LID mice with chronic IGF-1 deficiency. In contrast, these changes occurred in iLID mice with acute IGF-1 deficiency, in the same manner as the control animals, revealing a fundamental difference in the nature of the requirement for IGF-1 on tumor growth and metastasis. In the setting of obesity, our findings imply that IGF-1 is critical to activate and sustain an inflammatory response in the liver that is needed for hepatic metastasis, not only through direct, paracrine effect on tumor cell growth, but also through indirect effects involving the tumor microenvironment.

Collaboration


Dive into the Nomeli P. Nunez's collaboration.

Top Co-Authors

Avatar

Stephen D. Hursting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Susan N. Perkins

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jina Hong

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie B. Holcomb

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Renee E Stubbins

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

David Berrigan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyoko Kushiro

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Alison E. Harvey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Lyuba Varticovski

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge