Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nona Abolhassani is active.

Publication


Featured researches published by Nona Abolhassani.


Cell Death & Differentiation | 2009

ITPase-deficient mice show growth retardation and die before weaning.

Mehrdad Behmanesh; Kunihiko Sakumi; Nona Abolhassani; Shinya Toyokuni; Shigenori Oka; Yoshinori N. Ohnishi; Daisuke Tsuchimoto; Yusaku Nakabeppu

Inosine triphosphate pyrophosphatase (ITPase), the enzyme that hydrolyzes ITP and other deaminated purine nucleoside triphosphates to the corresponding purine nucleoside monophosphate and pyrophosphate, is encoded by the Itpa gene. In this study, we established Itpa knockout (KO) mice and used them to show that ITPase is required for the normal organization of sarcomeres in the heart. Itpa−/− mice died about 2 weeks after birth with features of growth retardation and cardiac myofiber disarray, similar to the phenotype of the cardiac α-actin KO mouse. Inosine nucleotides were found to accumulate in both the nucleotide pool and RNA of Itpa−/− mice. These data suggest that the role of ITPase in mice is to exclude ITP from the ATP pool, and the main target substrate of this enzyme is rITP. Our data also suggest that cardiomyopathy, which is mainly caused by mutations in sarcomeric protein-encoding genes, is also caused by a defect in maintaining the quality of the ATP pool, which is an essential requirement for sarcomere function.


Journal of Clinical Investigation | 2012

DNA repair is indispensable for survival after acute inflammation

Jennifer A. Calvo; Lisiane B. Meira; Chun-Yue I. Lee; Catherine A. Moroski-Erkul; Nona Abolhassani; Koli Taghizadeh; Lindsey Wood Eichinger; Sureshkumar Muthupalani; Line M. Nordstrand; Arne Klungland; Leona D. Samson

More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis.


Nucleic Acids Research | 2010

NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals

Nona Abolhassani; Teruaki Iyama; Daisuke Tsuchimoto; Kunihiko Sakumi; Mizuki Ohno; Mehrdad Behmanesh; Yusaku Nakabeppu

Mammalian inosine triphosphatase encoded by ITPA gene hydrolyzes ITP and dITP to monophosphates, avoiding their deleterious effects. Itpa− mice exhibited perinatal lethality, and significantly higher levels of inosine in cellular RNA and deoxyinosine in nuclear DNA were detected in Itpa− embryos than in wild-type embryos. Therefore, we examined the effects of ITPA deficiency on mouse embryonic fibroblasts (MEFs). Itpa− primary MEFs lacking ITP-hydrolyzing activity exhibited a prolonged doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in nuclear DNA, compared with primary MEFs prepared from wild-type embryos. However, immortalized Itpa− MEFs had neither of these phenotypes and had a significantly higher ITP/IDP-hydrolyzing activity than Itpa− embryos or primary MEFs. Mammalian NUDT16 proteins exhibit strong dIDP/IDP-hydrolyzing activity and similarly low levels of Nudt16 mRNA and protein were detected in primary MEFs derived from both wild-type and Itpa− embryos. However, immortalized Itpa− MEFs expressed significantly higher levels of Nudt16 than the wild type. Moreover, introduction of silencing RNAs against Nudt16 into immortalized Itpa− MEFs reproduced ITPA-deficient phenotypes. We thus conclude that NUDT16 and ITPA play a dual protective role for eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.


Nucleic Acids Research | 2010

NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest

Teruaki Iyama; Nona Abolhassani; Daisuke Tsuchimoto; Mari Nonaka; Yusaku Nakabeppu

Nucleotides function in a variety of biological reactions; however, they can undergo various chemical modifications. Such modified nucleotides may be toxic to cells if not eliminated from the nucleotide pools. We performed a screen for modified-nucleotide binding proteins and identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an inosine triphosphate (ITP)/xanthosine triphosphate (XTP)/GTP-binding protein. Recombinant NUDT16 hydrolyzes purine nucleoside diphosphates to the corresponding nucleoside monophosphates. Among 29 nucleotides examined, the highest kcat/Km values were for inosine diphosphate (IDP) and deoxyinosine diphosphate (dIDP). Moreover, NUDT16 moderately hydrolyzes (deoxy)inosine triphosphate ([d]ITP). NUDT16 is mostly localized in the nucleus, and especially in the nucleolus. Knockdown of NUDT16 in HeLa MR cells caused cell cycle arrest in S-phase, reduced cell proliferation, increased accumulation of single-strand breaks in nuclear DNA as well as increased levels of inosine in RNA. We thus concluded that NUDT16 is a (deoxy)inosine diphosphatase that may function mainly in the nucleus to protect cells from deleterious effects of (d)ITP.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010

ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells

Kunihiko Sakumi; Nona Abolhassani; Mehrdad Behmanesh; Teruaki Iyama; Daisuke Tsuchimoto; Yusaku Nakabeppu

Inosine triphosphate pyrophosphatase (ITPA protein) (EC 3.6.1.19) hydrolyzes deaminated purine nucleoside triphosphates, such as ITP and dITP, to their corresponding purine nucleoside monophosphate and pyrophosphate. In mammals, this enzyme is encoded by the Itpa gene. Using the Itpa gene-disrupted mouse as a model, we have elucidated the biological significance of the ITPA protein and its substrates, ITP and dITP. Itpa(-/-) mice exhibited peri- or post-natal lethality dependent on the genetic background. The heart of the Itpa(-/-) mouse was found to be structurally and functionally abnormal. Significantly higher levels of deoxyinosine and inosine were detected in nuclear DNA and RNA prepared from Itpa(-/-) embryos compared to wild type embryos. In addition, an accumulation of ITP was observed in the erythrocytes of Itpa(-/-) mice. We found that Itpa(-/-) primary mouse embryonic fibroblasts (MEFs), which have no detectable ability to generate IMP from ITP in whole cell extracts, exhibited a prolonged population-doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in their nuclear DNA, in comparison to primary MEFs prepared from wild type embryos. These results revealed that (1) ITP and dITP are spontaneously produced in vivo and (2) accumulation of ITP and dITP is responsible for the harmful effects observed in the Itpa(-/-) mouse. In addition to its effect as the precursor nucleotide for RNA transcription, ITP has the potential to influence the activity of ATP/GTP-binding proteins. The biological significance of ITP and dITP in the nucleotide pool remains to be elucidated.


Mechanisms of Ageing and Development | 2017

Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain

Nona Abolhassani; Julio Leon; Zijing Sheng; Sugako Oka; Hideomi Hamasaki; Toru Iwaki; Yusaku Nakabeppu

In normal brain, neurons in the cortex and hippocampus produce insulin, which modulates glucose metabolism and cognitive functions. It has been shown that insulin resistance impairs glucose metabolism and mitochondrial function, thus increasing production of reactive oxygen species. Recent progress in Alzheimers disease (AD) research revealed that insulin production and signaling are severely impaired in AD brain, thereby resulting in mitochondrial dysfunction and increased oxidative stress. Among possible oxidative DNA lesions, 8-oxoguanine (8-oxoG) is highly accumulated in the brain of AD patients. Previously we have shown that incorporating 8-oxoG in nuclear and mitochondrial DNA promotes MUTYH (adenine DNA glycosylase) dependent neurodegeneration. Moreover, cortical neurons prepared from MTH1 (8-oxo-dGTPase)/OGG1 (8-oxoG DNA glycosylase)-double deficient adult mouse brains is shown to exhibit significantly poor neuritogenesis in vitro with increased 8-oxoG accumulation in mitochondrial DNA in the absence of antioxidants. Therefore, 8-oxoG can be considered involved in the neurodegenerative process in AD brain. In mild cognitive impairment, mitochondrial dysfunction and oxidative damage may induce synaptic dysfunction due to energy failures in neurons thus resulting in impaired cognitive function. If such abnormality lasts long, it can lead to vicious cycles of oxidative damage, which may then trigger the neurodegenerative process seen in Alzheimer type dementia.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010

A comprehensive screening system for damaged nucleotide-binding proteins.

Daisuke Tsuchimoto; Teruaki Iyama; Mari Nonaka; Nona Abolhassani; Eiko Ohta; Kunihiko Sakumi; Yusaku Nakabeppu

To identify novel nucleotide pool sanitizing enzymes, we have established a comprehensive screening system for damaged nucleotide-binding proteins based on proteomics technology. In the screening system, affinity chromatography with resins carrying various damaged nucleotides is used for the purification of binding proteins, and the purified proteins are identified by mass-spectrometry. Inosine triphosphate (ITP) is a deleterious damaged nucleotide, and can be generated by nitrosative deamination of ATP or phosphorylation of inosine monophosphate (IMP). Using the above system, we performed screens for ITP-binding proteins from mouse and human cell extracts, and identified several ITP-binding enzymes. We identified both mouse inosine triphosphatase (ITPA) and human ITPA, well-known ITP hydrolyzing enzymes, as ITP-binding proteins. These results support the validity of this screening system. In addition to ITPA, we identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an ITP-binding protein. Biochemical analysis revealed that NUDT16 selectively hydrolyzes deoxyinosine diphosphate (dIDP) and IDP to deoxyinosine monophosphate (dIMP) and IMP, respectively. dITP and ITP are also hydrolyzed by NUDT16 to a lesser extent. The knockdown of NUDT16 in HeLa MR cells suppressed cell proliferation, and was accompanied by a significantly increased accumulation of strand breaks in nuclear DNA, suggesting that NUDT16 has an essential role in the maintenance of genome stability. RS21-C6, another ITP-binding protein identified in our screen, binds not only to ITP, but also to ATP. RS21-C6 hydrolyzes dCTP and 5-halo-dCTP, but does not hydrolyze ITP or ATP. It is likely that RS21-C6 may control dCTP levels or eliminate 5-halo-dCTP in the nucleotide pools. In conclusion, the results of these studies show that our screening system is applicable in studying the health effects of damaged nucleotides and cellular sanitizing systems for nucleotide pools.


Free Radical Biology and Medicine | 2017

MTH1 as a nucleotide pool sanitizing enzyme: Friend or foe?

Yusaku Nakabeppu; Eiko Ohta; Nona Abolhassani

&NA; 8‐Oxo‐7,8‐dihydroguanine (GO) can originate as 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine 5′‐triphosphate (8‐oxo‐dGTP), an oxidized form of dGTP in the nucleotide pool, or by direct oxidation of guanine base in DNA. Accumulation of GO in cellular genomes can result in mutagenesis or programmed cell death, and is thus minimized by the actions of MutT homolog‐1 (MTH1) with 8‐oxo‐dGTPase, OGG1 with GO DNA glycosylase and MutY homolog (MUTYH) with adenine DNA glycosylase. Studies on Mth1/Ogg1/Mutyh‐triple knockout mice demonstrated that the defense systems efficiently minimize GO accumulation in cellular genomes, and thus maintain low incidences of spontaneous mutagenesis and tumorigenesis. Mth1/Ogg1‐double knockout mice increased GO accumulation in the genome, but exhibited little susceptibility to spontaneous tumorigenesis, thus revealing that accumulation of GO in cellular genomes induces MUTYH‐dependent cell death. Cancer cells are exposed to high oxidative stress levels and accumulate a high level of 8‐oxo‐dGTP in their nucleotide pools; cancer cells consequently express increased levels of MTH1 to eliminate 8‐oxo‐dGTP, indicating that increased expression of MTH1 in cancer cells may be detrimental for cancer patients. Mth1/Ogg1‐double knockout mice are highly vulnerable to neurodegeneration under oxidative conditions, while transgenic expression of human MTH1 efficiently prevents neurodegeneration by avoiding GO accumulation in mitochondrial genomes of neurons and/or nuclear genomes of microglia, indicating that increased expression of MTH1 may be beneficial for neuronal tissues. HighlightsMTH1, OGG1 and MUTYH suppress accumulation of 8‐oxo‐7,8‐dihydroguanine in the genome.8‐oxo‐7,8‐dihydroguanine accumulation in the genome causes mutagenesis or cell death.Increased expression of MTH1 in cancer correlates with malignant phenotypes.MTH1 protects brain from oxidative stress by preventing 8‐oxo‐dGTP accumulation.


Brain Pathology | 2018

Association of adipocyte enhancer-binding protein 1 with Alzheimer's disease pathology in human hippocampi

Masahiro Shijo; Hiroyuki Honda; Satoshi Suzuki; Hideomi Hamasaki; Masaaki Hokama; Nona Abolhassani; Yusaku Nakabeppu; Toshiharu Ninomiya; Takanari Kitazono; Toru Iwaki

Adipocyte enhancer binding protein 1 (AEBP1) activates inflammatory responses via the NF‐κB pathway in macrophages and regulates adipogenesis in preadipocytes. Up‐regulation of AEBP1 in the hippocampi of patients with Alzheimers disease (AD) has been revealed by microarray analyses of autopsied brains from the Japanese general population (the Hisayama study). In this study, we compared the expression patterns of AEBP1 in normal and AD brains, including in the hippocampus, using immunohistochemistry. The subjects were 24 AD cases and 52 non‐AD cases. Brain specimens were immunostained with antibodies against AEBP1, tau protein, amyloid β protein, NF‐κB, GFAP and Iba‐1. In normal brains, AEBP1 immunoreactivity mainly localized to the perikarya of hippocampal pyramidal neurons, and its expression was elevated in the pyramidal neurons and some astrocytes in AD hippocampi. Although AEBP1 immunoreactivity was almost absent in neurons containing neurofibrillary tangles, AEBP1 was highly expressed in neurons with pretangles and in the tau‐immunopositive, dystrophic neurites of senile plaques. Nuclear localization of NF‐κB was also observed in certain AEBP1‐positive neurons in AD cases. Comparison of AD and non‐AD cases suggested a positive correlation between the expression level of AEBP1 and the degree of amyloid β pathology. These findings imply that AEBP1 protein has a role in the progression of AD pathology.


Scientific Reports | 2016

Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

Yasuto Yoneshima; Nona Abolhassani; Teruaki Iyama; Kunihiko Sakumi; Naoko Shiomi; Masahiko Mori; Tadahiro Shiomi; Tetsuo Noda; Daisuke Tsuchimoto; Yusaku Nakabeppu

Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity.

Collaboration


Dive into the Nona Abolhassani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge