Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kunihiko Sakumi is active.

Publication


Featured researches published by Kunihiko Sakumi.


Biological Chemistry | 2006

Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids.

Yusaku Nakabeppu; Kunihiko Sakumi; Katsumi Sakamoto; Daisuke Tsuchimoto; Teruhisa Tsuzuki; Yoshimichi Nakatsu

Abstract Genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are generated both as byproducts of oxygen respiration or molecular executors in the host defense, and by environmental exposure to ionizing radiation and chemicals. To counteract such oxidative damage in nucleic acids, mammalian cells are equipped with three distinct enzymes. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-2′-deoxyguanosine triphosphate and 2-hydroxy-2′-deoxyadenosine triphosphate (2-OH-dATP), to the corresponding monophosphates. We observed increased susceptibility to spontaneous carcinogenesis in MTH1-null mice, which exhibit an increased occurrence of A:T→C:G and G:C→T:A transversion mutations. 8-Oxoguanine (8-oxoG) DNA glycosylase, encoded by the OGG1 gene, and adenine DNA glycosylase, encoded by the MUTYH gene, are responsible for the suppression of G:C to T:A transversions caused by the accumulation of 8-oxoG in the genome. Deficiency of these enzymes leads to increased tumorigenesis in the lung and intestinal tract in mice, respectively. MUTYH deficiency may also increase G:C to T:A transversions through the misincorporation of 2-OH-dATP, especially in the intestinal tract, since MUTYH can excise 2-hydroxyadenine opposite guanine in genomic DNA and the repair activity is selectively impaired by a mutation found in patients with autosomal recessive colorectal adenomatous polyposis.


Journal of Neuroscience Research | 2007

Oxidative damage in nucleic acids and Parkinson's disease

Yusaku Nakabeppu; Daisuke Tsuchimoto; Hiroo Yamaguchi; Kunihiko Sakumi

Oxidative DNA lesions, such as 8‐oxoguanine (8‐oxoG), accumulate in nuclear and mitochondrial genomes during aging, and such accumulation can increase dramatically in patients with Parkinsons disease (PD). To counteract oxidative damage to nucleic acids, human and rodents are equipped with three distinct enzymes. One of these, MTH1, hydrolyzes oxidized purine nucleoside triphosphates, such as 8‐oxo‐2′‐deoxyguanosine triphosphate and 2‐hydroxy‐2′‐deoxyadenosine triphosphate, to their monophosphate forms. The other two enzymes are 8‐oxoG DNA glycosylase encoded by the OGG1 gene and adenine/2‐hydroxyadenine DNA glycosylase encoded by the MUTYH gene. We have shown a significant increase in 8‐oxoG in mitochondrial DNA as well as an elevated expression of MTH1, OGG1, and MUTYH in nigrostriatal dopaminergic neurons of PD patients, suggesting that the buildup of these lesions may cause dopamine neuron loss. We established MTH1‐null mice and found that MTH1‐null fibroblasts were highly susceptible to cell death caused by H2O2 characterized by pyknosis and electron‐dense deposits in the mitochondria, and that this was accompanied by an ongoing accumulation of 8‐oxoG in nuclear and mitochondrial DNA. We also showed that MTH1‐null mice exhibited an increased accumulation of 8‐oxoG in striatal mitochondrial DNA, followed by more extreme neuronal dysfunction after 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine administration than that of wild‐type mice. In conclusion, oxidative damage in nucleic acids is likely to be a major risk factor for Parkinsons disease, indicating that a solid understanding of the defense mechanisms involved will enable us to develop new strategies for protecting the brain against oxidative stress.


The EMBO Journal | 2008

Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs.

Sugako Oka; Mizuki Ohno; Daisuke Tsuchimoto; Kunihiko Sakumi; Masato Furuichi; Yusaku Nakabeppu

Oxidative base lesions, such as 8‐oxoguanine (8‐oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8‐oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8‐oxoG DNA glycosylase in OGG1‐null mouse cells. The accumulation of 8‐oxoG in nuclear DNA caused poly‐ADP‐ribose polymerase (PARP)‐dependent nuclear translocation of apoptosis‐inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single‐strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8‐oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.


PLOS ONE | 2009

Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease

Kyota Fujita; Toshihiro Seike; Noriko Yutsudo; Mizuki Ohno; Hidetaka Yamada; Hiroo Yamaguchi; Kunihiko Sakumi; Yukiko Yamakawa; Mizuho A. Kido; Atsushi Takaki; Toshihiko Katafuchi; Yoshinori Tanaka; Yusaku Nakabeppu; Mami Noda

It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinsons disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.


Cancer Research | 2005

8-Oxoguanine Formation Induced by Chronic UVB Exposure Makes Ogg1 Knockout Mice Susceptible to Skin Carcinogenesis

Makoto Kunisada; Kunihiko Sakumi; Yohei Tominaga; Arief Budiyanto; Masato Ueda; Masamitsu Ichihashi; Yusaku Nakabeppu; Chikako Nishigori

8-Oxoguanine is one of the oxidative DNA damages that can result in stable mutations. The Ogg1 gene encodes the repair enzyme 8-oxoguanine-DNA glycosylase, which removes the oxidized base from DNA. In this study, we investigated the role of 8-oxoguanine in skin carcinogenesis induced by UVB irradiation using Ogg1 knockout mice (C57Bl/6J background). We examined the effect of UVB irradiation on the formation of 8-oxoguanine in epidermal cells using immunostaining and found that the level of 8-oxoguanine in Ogg1 knockout mice 24 hours after UVB irradiation remained high compared with that in wild-type and heterozygous mice. To verify the effect of chronic UVB irradiation on 8-oxoguanine formations in epidermal cells, we irradiated wild-type, heterozygous, and Ogg1 knockout mice with UVB at a dose of 2.5 kJ/m2 thrice a week for 40 weeks. We found that the mean number of tumors in Ogg1 knockout mice was 3.71, which was significantly more than in wild-type and heterozygous mice, being 1.71 and 2.28, respectively. The rate of developing malignant tumors in Ogg1 knockout mice was also significantly higher (88.5%; squamous cell carcinomas, 73.1%; sarcomas, 15.4%) than in wild-type mice (50.0%; squamous cell carcinomas, 41.7%; sarcomas, 8.3%). Moreover, the age of onset of developing skin tumors in Ogg1 knockout mice was earlier than in the other types of mice. These results clearly indicate that oxidative DNA damage induced by sunlight plays an important role in the development of skin cancers.


Journal of Biological Chemistry | 2003

An Oxidized Purine Nucleoside Triphosphatase, MTH1, Suppresses Cell Death Caused by Oxidative Stress

Daisuke Yoshimura; Kunihiko Sakumi; Mizuki Ohno; Yasunari Sakai; Masato Furuichi; Shigenori Iwai; Yusaku Nakabeppu

MTH1 hydrolyzes oxidized purine nucleoside triphosphates such as 8-oxo-2′-deoxyguanosine 5′-triphosphate (8-oxo-dGTP) and 2-hydroxy-2′-deoxyadenosine 5′-triphosphate (2-OH-dATP) and thus protects cells from damage caused by their misincorporation into DNA. In the present study, we established MTH1-null mouse embryo fibroblasts that were highly susceptible to cell dysfunction and death caused by exposure to H2O2, with morphological features of pyknosis and electron-dense deposits accumulated in mitochondria. The cell death observed was independent of both poly(ADP-ribose) polymerase and caspases. A high performance liquid chromatography tandem mass spectrometry analysis and immunofluorescence microscopy revealed a continuous accumulation of 8-oxo-guanine both in nuclear and mitochondrial DNA after exposure to H2O2. All of the H2O2-induced alterations observed in MTH1-null mouse embryo fibroblasts were effectively suppressed by the expression of wild type human MTH1 (hMTH1), whereas they were only partially suppressed by the expression of mutant hMTH1 defective in either 8-oxo-dGTPase or 2-OH-dATPase activity. Human MTH1 thus protects cells from H2O2-induced cell dysfunction and death by hydrolyzing oxidized purine nucleotides including 8-oxo-dGTP and 2-OH-dATP, and these alterations may be partly attributed to a mitochondrial dysfunction.


Cancer Research | 2007

MUTYH-Null Mice Are Susceptible to Spontaneous and Oxidative Stress–Induced Intestinal Tumorigenesis

Katsumi Sakamoto; Yohei Tominaga; Kazumi Yamauchi; Yoshimichi Nakatsu; Kunihiko Sakumi; Kaoru Yoshiyama; Akinori Egashira; Shinobu Kura; Takashi Yao; Masazumi Tsuneyoshi; Hisaji Maki; Yusaku Nakabeppu; Teruhisa Tsuzuki

MUTYH is a mammalian DNA glycosylase that initiates base excision repair by excising adenine opposite 8-oxoguanine and 2-hydroxyadenine opposite guanine, thereby preventing G:C to T:A transversion caused by oxidative stress. Recently, biallelic germ-line mutations of MUTYH have been found in patients predisposed to a recessive form of hereditary multiple colorectal adenoma and carcinoma with an increased incidence of G:C to T:A somatic mutations in the APC gene. In the present study, a systematic histologic examination revealed that more spontaneous tumors had developed in MUTYH-null mice (72 of 121; 59.5%) than in the wild type (38 of 109; 34.9%). The increased incidence of intestinal tumors in MUTYH-null mice (11 tumors in 10 of 121 mice) was statistically significant compared with the wild type (no intestinal tumors in 109 mice). Two adenomas and seven adenocarcinomas were observed in the small intestines, and two adenomas but no carcinomas were found in the colons. In MUTYH-null mice treated with KBrO(3), the occurrence of small intestinal tumors dramatically increased. The mean number of polyps induced in the small intestines of these mice was 61.88 (males, 72.75; females, 51.00), whereas it was 0.85 (males, 0.50; females, 1.00) in wild-type mice. The tumors developed predominantly in the duodenum and in the upper region of the (jejunum) small intestines. We conclude that MUTYH suppresses spontaneous tumorigenesis in mammals, thus providing experimental evidence for the association between biallelic germ-line MUTYH mutations and a recessive form of human hereditary colorectal adenoma and carcinoma.


Free Radical Research | 2004

The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death

Yusaku Nakabeppu; Daisuke Tsuchimoto; Masato Furuichi; Kunihiko Sakumi

To counteract oxidative damage in nucleic acids, mammalian cells are equipped with several defense mechanisms. We herein review that MTH1, MUTYH and OGG1 play important roles in mammalian cells avoiding an accumulation of oxidative DNA damage, both in the nuclear and mitochondrial genomes, thereby suppressing carcinogenesis and cell death. MTH1 efficiently hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP, 8-oxo-dATP and 2-hydroxy (OH)-dATP, to the monophosphates, thus avoiding the incorporation of such oxidized nucleotides into the nuclear and mitochondrial genomes. OGG1 excises 8-oxoG in DNA as a DNA glycosylase and thus minimizes the accumulation of 8-oxoG in the cellular genomes. MUTYH excises adenine opposite 8-oxoG, and thus suppresses 8-oxoG-induced mutagenesis. MUTYH also possesses a 2-OH-A DNA glycosylase activity for excising 2-OH-A incorporated into the cellular genomes. Increased susceptibilities to spontaneous carcinogenesis of the liver, lung or intestine were observed in MTH1-, OGG1- and MUTYH-null mice, respectively. The increased occurrence of lung tumors in OGG1-null mice was abolished by the concomitant disruption of the Mth1 gene, indicating that an increased accumulation of 8-oxoG and/or 2-OH-A might cause cell death. Furthermore, these defense mechanisms also likely play an important role in neuroprotection.


Journal of Biological Chemistry | 2003

Mutator Phenotype of MUTYH-null Mouse Embryonic Stem Cells

Seiki Hirano; Yohei Tominaga; Akimasa Ichinoe; Yasuhiro Ushijima; Daisuke Tsuchimoto; Yoko Honda-Ohnishi; Toshio Ohtsubo; Kunihiko Sakumi; Yusaku Nakabeppu

To evaluate the antimutagenic role of a mammalian mutY homolog, namely the Mutyh gene, which encodes adenine DNA glycosylase excising adenine misincorporated opposite 8-oxoguanine in the template DNA, we generated MUTYH-null mouse embryonic stem (ES) cells. In the MUTYH-null cells carrying no adenine DNA glycosylase activity, the spontaneous mutation rate increased 2-fold in comparison with wild type cells. The expression of wild type mMUTYH or mutant mMUTYH protein with amino acid substitutions at the proliferating cell nuclear antigen binding motif restored the increased spontaneous mutation rates of the MUTYH-null ES cells to the wild type level. The expression of a mutant mMUTYH protein with an amino acid substitution (G365D) that corresponds to a germ-line mutation (G382D) found in patients with multiple colorectal adenomas could not suppress the elevated spontaneous mutation rate of the MUTYH-null ES cells. Although the recombinant mMUTYH(G365D) purified from Escherichia coli cells had a substantial level of adenine DNA glycosylase activity as did wild type MUTYH, no adenine DNA glycosylase activity was detected in the MUTYH-null ES cells expressing the mMUTYH(G365D) mutant protein. The germ-line mutation (G382D) of the human MUTYH gene is therefore likely to be responsible for the occurrence of a mutator phenotype in these patients.


Mutation Research-dna Repair | 1990

Structures and functions of DNA glycosylases

Kunihiko Sakumi; Mutsuo Sekiguchi

Treatment of cells with a methylating agent, such as methyl methanesulfonate (MMS) and Nmethyl-N-nitrosourea (MNU), yields various methylated bases in DNA (Riazuddin and Lindahl, 1978). Organisms possess mechanisms to repair these methylated bases, which are potentially harmful to their genetic material. O6-methylguanine and O4-methylthymine are repaired by direct removal of their methyl groups by methyltransferases (McCarthy et al., 1984; Teo et al., 1984; Nakabeppu et al., 1985; Potter et al., 1987; Rebeck et al., 1988). Most other lesions, including 3-methyladenine and 3-methylguanine, can be recognized and excised by DNA glycosylases. An apurinic/apyrimidinic (AP) site thus produced (Sagher and Strauss, 1985) is repaired by sequential reactions catalyzed by AP endonuclease, exonuclease, DNA polymerase and ligase. The latter process, called excision repair (base excision repair), functions not only for alkylated bases but also for abnormal bases, such as uracil, in DNA. Since the first report of uracil-DNA glycosylase (Lindahl, 1974), various DNA glycosylases have been found in different organisms (Caradonna et al., 1987; Pierre and Laval, 1986; Crosby et al., 1981; Blalsdell and Warner, 1983; Morgan and Chlebek, 1989; Brent, 1979; Karran and Lindahl, 1980). DNA glycosylases can be defined as enzymes which catalyze hydrolysis of an N-glyco-

Collaboration


Dive into the Kunihiko Sakumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mizuki Ohno

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori N. Ohnishi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge