Noor M. Khaskhely
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Noor M. Khaskhely.
Blood | 2008
Daniela Buglio; Georgios V. Georgakis; Shino Hanabuchi; Kazuhiko Arima; Noor M. Khaskhely; Yong-Jun Liu; Anas Younes
Epigenetic changes have been implicated in silencing several B-cell genes in Hodgkin and Reed-Sternberg cells (HRS) of Hodgkin lymphoma (HL), and this mechanism has been proposed to promote HRS survival and escape from immunosurveillance. However, the molecular and functional consequences of histone deacetylase (HDAC) inhibition in HL have not been previously described. In this study, we report that the HDAC inhibitor vorinostat induced p21 expression and decreased Bcl-xL levels causing cell-cycle arrest and apoptosis. Furthermore, vorinostat inhibited STAT6 phosphorylation and decreased its mRNA levels in a dose- and time-dependent manner, which was associated with a decrease in the expression and secretion of Thymus and Activation-Regulated Chemokine (TARC/CCL17) and interleukin (IL)-5 and an increase in IP-10 levels. Moreover, vorino-stat inhibited TARC secretion by dendritic cells that were activated by the thymic stromal lymphopoietin (TSLP). Collectively, these data suggest that pharmacologic HDAC inhibition in HL may induce favorable antitumor activity by a direct antiproliferative effect on HRS cells, and possibly by an immune mediated effect by altering cytokine and chemokines secretion in the microenvironment.
Journal of Immunology | 2008
Atsushi Fukunaga; Noor M. Khaskhely; Coimbatore S. Sreevidya; Scott N. Byrne; Stephen E. Ullrich
Langerhans cells (LCs) serve as epidermal sentinels of the adaptive immune system. Conventional wisdom suggests that LCs encounter Ag in the skin and then migrate to the draining lymph nodes, where the Ag is presented to T cells, thus initiating an immune response. Platelet-activating factor (PAF) is a phospholipid mediator with potent biological effects. During inflammation, PAF mediates recruitment of leukocytes to inflammatory sites. We herein tested a hypothesis that PAF induces LC migration. Applying 2,4-dinitro-1-fluorobenzene (DNFB) to wild-type mice activated LC migration. In contrast, applying DNFB to PAF receptor-deficient mice or mice injected with PAF receptor antagonists failed to induce LC migration. Moreover, after FITC application the appearance of hapten-laden LCs (FITC+, CD11c+, Langerin+) in the lymph nodes of PAF receptor-deficient mice was significantly depressed compared with that found in wild-type mice. LC chimerism indicates that the PAF receptor on keratinocytes but not LCs is responsible for LC migration. Contrary to the diminution of LC migration in PAF receptor-deficient mice, we did not observe any difference in the migration of hapten-laden dermal dendritic cells (FITC+, CD11c+, Langerin−) into the lymph nodes of PAF receptor-deficient mice. Additionally, the contact hypersensitivity response generated in wild-type or PAF receptor-deficient mice was identical. Finally, dermal dendritic cells, but not LCs isolated from the draining lymph nodes after hapten application, activated T cell proliferation. These findings suggest that LC migration may not be responsible for the generation of contact hypersensitivity and that dermal dendritic cells may play a more important role.
Journal of Investigative Dermatology | 2010
Coimbatore S. Sreevidya; Atsushi Fukunaga; Noor M. Khaskhely; Taro Masaki; Ryusuke Ono; Chikako Nishigori; Stephen E. Ullrich
UV exposure induces skin cancer, in part, by inducing immune suppression. Repairing DNA damage, neutralizing the activity of cis-urocanic acid, and reversing oxidative stress abrogate UV-induced immune suppression and skin cancer induction, suggesting that DNA, UCA, and lipid photo-oxidation serve as UV photoreceptors. What is not clear is whether signaling through each of these different photoreceptors activates independent pathways to induce biological effects or whether there is a common checkpoint where these pathways converge. Here, we show that agents known to reverse photocarcinogenesis and photoimmune suppression, such as platelet-activating factor (PAF) and serotonin (5-HT) receptor antagonists, regulate DNA repair. Pyrimidine dimer repair was accelerated in UV-irradiated mice injected with PAF and 5-HT receptor antagonists. Nucleotide excision repair (NER), as measured by unscheduled DNA synthesis, was accelerated by PAF and 5-HT receptor antagonists. Injecting PAF and 5-HT receptor antagonists into UV-irradiated Xeroderma pigmentosum complementation group A-deficient mice, which lack the enzymes responsible for NER, did not accelerate photoproduct repair. Similarly, UV-induced formation of 8-oxo-deoxyguanosine was reduced by PAF and 5-HT receptor antagonists. We conclude that PAF and 5-HT receptor antagonists accelerate DNA repair caused by UV radiation, which prevents immune suppression and interferes with photocarcinogenesis.
British Journal of Haematology | 2009
Annunziata Gloghini; Daniela Buglio; Noor M. Khaskhely; Georgios V. Georgakis; Robert Z. Orlowski; Sattva S. Neelapu; Antonino Carbone; Anas Younes
Unselective histone deacetylase (HDAC) inhibitors are a promising novel therapy for lymphoid malignancies. However, these treatments remain empiric as the pattern of HDAC enzymes in different types of cancer, including lymphoid malignancies, remains unknown. We examined the expression of class I and class II HDACs in a panel of cell lines and tissue sections from primary lymphoid tumours. Class I enzymes were highly expressed in all cell lines and primary tumours studied, including the non‐malignant reactive cells in the Hodgkin lymphoma (HL) microenvironment. The most frequently altered HDAC expression was HDAC6, as it was either weakly expressed or undetected in 9/14 (64%) of lymphoid cell lines and in 83/89 (93%) of primary lymphoma tissue specimens, including 50/52 (96%) cases of diffuse large B‐cell lymphoma, and 18/22 (82%) cases of classical HL. Cell lines that had low expression level of HDAC6 demonstrated aberrant expression of hyper‐acetylated tubulin, and were found to be more sensitive to the growth inhibitory effects of the class I HDAC inhibitor MGCD0103. Collectively, our data demonstrate that HDAC6 is rarely expressed in primary lymphoma cases, suggesting that it may not be an important therapeutic target in these lymphoid malignancies.
Journal of Immunology | 2010
Atsushi Fukunaga; Noor M. Khaskhely; Ying Ma; Coimbatore S. Sreevidya; Kumiko Taguchi; Chikako Nishigori; Stephen E. Ullrich
Ultraviolet exposure alters the morphology and function of epidermal Langerhans cells (LCs), which play a role in UV-induced immune suppression. It is generally believed that UV exposure triggers the migration of immature LCs from the skin to the draining lymph nodes (LNs), where they induce tolerance. However, because most of the previous studies employed in vitro UV-irradiated LCs, the data generated may not adequately reflect what is happening in vivo. In this study, we isolated migrating LCs from the LNs of UV-irradiated mice and studied their function. We found prolonged LC survival in the LNs of UV-irradiated mice. LCs were necessary for UV-induced immune suppression because no immune suppression was observed in LC-deficient mice. Transferring LCs from UV-irradiated mice into normal recipient animals transferred immune suppression and induced tolerance. We found that LCs colocalized with LN NKT cells. No immune suppression was observed when LCs were transferred from UV-irradiated mice into NKT cell-deficient mice. NKT cells isolated from the LNs of UV-irradiated mice secreted significantly more IL-4 than NKT cells isolated from nonirradiated controls. Injecting the wild-type mice with anti–IL-4 blocked the induction of immune suppression. Our findings indicate that UV exposure activates the migration of mature LC to the skin draining LNs, where they induce immune regulation in vivo by activating NKT cells.
Cancer Research | 2008
Coimbatore S. Sreevidya; Noor M. Khaskhely; Atsushi Fukunaga; Polina Khaskina; Stephen E. Ullrich
The UV radiation in sunlight is the primary cause of nonmelanoma skin cancer. Moreover, UV exposure induces immune suppression. Early steps in the cascade of events leading to immune suppression are the binding of UV-induced platelet-activating factor (PAF) to its receptor and the binding of cis-urocanic acid, a photoreceptor for UVB radiation, to the serotonin (5-HT(2A)) receptor. Here, we tested the hypothesis that blocking the binding of PAF and 5-HT(2A) to their receptors would also block skin cancer induction. Hairless mice were injected with PAF or serotonin receptor antagonists and then exposed to solar-simulated UV radiation. We noted a significant and substantial decrease in skin cancer incidence in mice treated with the PAF or 5-HT(2A) receptor antagonists. Also, the PAF and/or serotonin receptor antagonists blocked skin cancer progression. The PAF and serotonin receptor antagonists worked in a synergistic fashion to block skin cancer induction. We also measured the effect that injecting PAF and 5-HT(2A) receptor antagonists had on UV-induced skin damage after a single UV exposure. We noted a significant decrease in UV-induced hypertrophy, sunburn cell formation, and apoptosis when the mice were injected with PAF and/or 5-HT(2A) receptor antagonists. These data indicate that treating UV-irradiated mice with PAF and 5-HT(2A) receptor antagonists blocks skin cancer induction in vivo, in part by reversing UV-induced damage to the skin and by preventing the induction of immune suppression.
Blood | 2011
Daniela Buglio; Noor M. Khaskhely; Kui Shin Voo; Hector Martinez-Valdez; Yong-Jun Liu; Anas Younes
In Hodgkin lymphoma (HL), the malignant cells are surrounded by a large number of reactive infiltrating inflammatory cells, including OX40-expressing T cells and interleukin 10 (IL-10)-producing regulatory T (T-reg) cells. These T-reg cells can suppress the immune response and thus contribute to the maintenance of immune tolerance and to insufficient antitumor response. The engagement of OX40L with the OX40 receptor is essential for the generation of antigen-specific memory T cells and for the induction of host antitumor immunity. In the present study, we investigated whether histone deacetylase inhibitors (HDACis) may induce a favorable antitumor immune response by regulating the expression of OX40L in HL. We found that HDACis up-regulated OX40L surface expression in HL cell lines in a dose-dependent manner. Small interfering RNAs (siRNAs) that selectively inhibited HDAC11 expression, significantly up-regulated OX40L and induced apoptosis in HL cell lines, and silencing HDAC11 transcripts increased the production of tumor necrosis-α (TNF-α) and IL-17 in the supernatants of HL cells. Furthermore, HDACI-induced OX40L inhibited the generation of IL-10-producing type 1 T-reg cells. These results demonstrate for the first time that HDAC11 plays an essential role in regulating OX40L expression. Pharmacologic inhibition of HDAC11 may produce a favorable antitumor immune response in patients with HL.
British Journal of Haematology | 2010
Daniela Buglio; Vidya Mamidipudi; Noor M. Khaskhely; Helen Brady; Carla Heise; Jeffrey M. Besterman; Robert E. Martell; Kyle J. MacBeth; Anas Younes
Inhibition of histone deacetylase 6 (HDAC6)‐dependent aggresome function by pan HDAC inhibitors was recently reported to be a key mechanism underlying the synergistic activity between proteasome inhibitors and HDAC inhibitors in a variety of tumour types. Because these combinations induce significant thrombocytopenia in vivo, we examined whether less toxic, isotype‐selective HDAC inhibitors may still synergize with proteasome inhibitors, and if so, by what mechanisms. Here, we showed that the class I HDAC inhibitor, MGCD0103, has a potent antiproliferative activity in Hodgkin lymphoma (HL) cell lines. Furthermore, MGCD0103 induced tumour necrosis factor α (TNF‐α) expression and secretion, which was associated with nuclear factor (NF)‐κB activation. Selective inhibition of TNF‐α expression by short interfering mRNA, or inhibition of MGCD0103‐induced NF‐kB activation by proteasome inhibitors enhanced MGCD0103‐induced cell death. Thus, our results demonstrate that MGCD0103 may synergize with proteasome inhibitors by HDAC6‐independent mechanisms, providing mechanistic rationale for exploring this potentially less toxic combination for the treatment of lymphoma.
Experimental Hematology | 2011
Ádám Jóna; Noor M. Khaskhely; Daniela Buglio; Jessica A. Shafer; Enrico Derenzini; Catherine M. Bollard; L. Jeffrey Medeiros; Árpád Illés; Yuan Ji; Anas Younes
American Journal of Pathology | 2007
Elke Janig; Martin Haslbeck; Ariane Aigelsreiter; Nathalie Braun; Daniela Unterthor; Peter Wolf; Noor M. Khaskhely; Johannes Buchner; Helmut Denk; Kurt Zatloukal