Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nor Muhammad Mahadi is active.

Publication


Featured researches published by Nor Muhammad Mahadi.


Applied Microbiology and Biotechnology | 2013

Optimisation of signal peptide for recombinant protein secretion in bacterial hosts

Kheng Oon Low; Nor Muhammad Mahadi; Rosli Md. Illias

Escherichia coli—the powerhouse for recombinant protein production—is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.


BMC Evolutionary Biology | 2013

Dengue virus type 1 clade replacement in recurring homotypic outbreaks

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Jefree Johari; Meng-Hooi Shu; Mohammed Bashar Danlami; Juraina Abd-Jamil; NorAziyah MatRahim; Nor Muhammad Mahadi; Sazaly AbuBakar

BackgroundRecurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control.ResultsWe used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987–2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions.ConclusionDENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection.


Data in Brief | 2017

Data for proteome analysis of Bacillus lehensis G1 in starch-containing medium

How Lie Ling; Zaidah Rahmat; Abdul Munir Abdul Murad; Nor Muhammad Mahadi; Rosli Md. Illias

Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article “Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli” (Ling et. al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).


BMC Structural Biology | 2014

A Sco protein among the hypothetical proteins of Bacillus lehensis G1: Its 3D macromolecular structure and association with Cytochrome C Oxidase

Soo Huei Tan; Yahaya M. Normi; Adam Thean Chor Leow; Abu Bakar Salleh; Roghayeh Abedi Karjiban; Abdul Munir Abdul Murad; Nor Muhammad Mahadi; Mohd Basyaruddin Abdul Rahman

BackgroundAt least a quarter of any complete genome encodes for hypothetical proteins (HPs) which are largely non-similar to other known, well-characterized proteins. Predicting and solving their structures and functions is imperative to aid understanding of any given organism as a complete biological system. The present study highlights the primary effort to classify and cluster 1202 HPs of Bacillus lehensis G1 alkaliphile to serve as a platform to mine and select specific HP(s) to be studied further in greater detail.ResultsAll HPs of B. lehensis G1 were grouped according to their predicted functions based on the presence of functional domains in their sequences. From the metal-binding group of HPs of the cluster, an HP termed Bleg1_2507 was discovered to contain a thioredoxin (Trx) domain and highly-conserved metal-binding ligands represented by Cys69, Cys73 and His159, similar to all prokaryotic and eukaryotic Sco proteins. The built 3D structure of Bleg1_2507 showed that it shared the βαβαββ core structure of Trx-like proteins as well as three flanking β-sheets, a 310 –helix at the N-terminus and a hairpin structure unique to Sco proteins. Docking simulations provided an interesting view of Bleg1_2507 in association with its putative cytochrome c oxidase subunit II (COXII) redox partner, Bleg1_2337, where the latter can be seen to hold its partner in an embrace, facilitated by hydrophobic and ionic interactions between the proteins. Although Bleg1_2507 shares relatively low sequence identity (47%) to BsSco, interestingly, the predicted metal-binding residues of Bleg1_2507 i.e. Cys-69, Cys-73 and His-159 were located at flexible active loops similar to other Sco proteins across biological taxa. This highlights structural conservation of Sco despite their various functions in prokaryotes and eukaryotes.ConclusionsWe propose that HP Bleg1_2507 is a Sco protein which is able to interact with COXII, its redox partner and therefore, may possess metallochaperone and redox functions similar to other documented bacterial Sco proteins. It is hoped that this scientific effort will help to spur the search for other physiologically relevant proteins among the so-called “orphan” proteins of any given organism.


BMC Evolutionary Biology | 2018

Emergence of the Asian lineage dengue virus type 3 genotype III in Malaysia

Kim-Kee Tan; Nurul-Izzani Zulkifle; Syuhaida Sulaiman; Sui-Ping Pang; NurAsyura NorAmdan; NorAziyah MatRahim; Juraina Abd-Jamil; Meng-Hooi Shu; Nor Muhammad Mahadi; Sazaly AbuBakar

BackgroundDengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.ResultsPhylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5–553I/M, NS5–629xa0T, and NS5–820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.ConclusionsDistinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.


Journal of Biochemistry | 2016

Danger lurking in the “unknowns”: Structure-to-Function Studies of Hypothetical Protein Bleg1_2437 from Bacillus lehensis G1 Alkaliphile Revealed an Evolutionary Divergent B3 Metallo-beta-lactamase

Soo Huei Tan; Yahaya M. Normi; Adam Thean Chor Leow; Abu Bakar Salleh; Abdul Munir Abdul Murad; Nor Muhammad Mahadi; Mohd Basyaruddin Abdul Rahman

The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn(2+)-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.The effectiveness of β-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-β-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αββα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of β-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several β-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.


European Food Research and Technology | 2008

Experimental design to optimization of beta cyclodextrin production from ungelatinized sago starch

Zulfikri A. Rauf; Rosli Md. Ilias; Nor Muhammad Mahadi; Osman Hassan


Indian journal of science and technology | 2015

Statistical Analysis of Differential Expression Level of Genes in Glaciozyma Antarctica PII2

Nurul Nadia Zulkefri; Nora Muda; Mohd Nazalan Mohd Najimudin; Nor Muhammad Mahadi; Abdul Munir Abdul Murad; Nursyafiqi Zainuddin


International Journal of Infectious Diseases | 2012

Purifying selection in the evolution of dengue virus type 1 in Malaysia

Boon-Teong Teoh; Sing-Sin Sam; Kim-Kee Tan; Mohammed Bashar Danlami; Jefree Johari; Meng-Hooi Shu; Sui-Ping Pang; NurAsyura NorAmdan; S.H. Hashim; V. Tiong; Juraina Abd-Jamil; NorAziyah MatRahim; S. Misbah; Pooi-Fong Wong; Keivan Zandi; Nor Muhammad Mahadi; Sazaly AbuBakar


International Journal of Infectious Diseases | 2012

Predicting the emergence of predominant DENV-1 with potential to cause major outbreak in Malaysia

Mohammed Bashar Danlami; Boon-Teong Teoh; Juraina Abd-Jamil; Nor Muhammad Mahadi; Sazaly AbuBakar

Collaboration


Dive into the Nor Muhammad Mahadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdul Munir Abdul Murad

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge