Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nóra Lehotai is active.

Publication


Featured researches published by Nóra Lehotai.


Annals of Botany | 2011

Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings

Andrea Pető; Nóra Lehotai; Jorge Lozano-Juste; José León; Irma Tari; László Erdei; Zsuzsanna Kolbert

BACKGROUND AND AIMS Plants are able to adapt to the environment dynamically through regulation of their growth and development. Excess copper (Cu(2+)), a toxic heavy metal, induces morphological alterations in plant organs; however, the underlying mechanisms are still unclear. With this in mind, the multiple signalling functions of nitric oxide (NO) in plant cells and its possible regulatory role and relationship with auxin were examined during Cu(2+)-induced morphological responses. METHODS Endogenous auxin distribution was determined by microscopic observation of X-Gluc-stained DR5::GUS arabidopsis, and the levels of NO, superoxide and peroxynitrite were detected by fluorescence microscopy. As well as wild-type, NO-overproducer (nox1) and -deficient (nia1nia2 and nia1nia2noa1-2) arabidopsis plants were used. KEY RESULTS Cu(2+) at a concentration of 50 µm resulted in a large reduction in cotyledon area and hypocotyl and primary root lengths, accompanied by an increase in auxin levels. In cotyledons, a low Cu(2+) concentration promoted NO accumulation, which was arrested by nitric oxide synthase or nitrate reductase inhibitors. The 5-μm Cu(2+)-induced NO synthesis was not detectable in nia1nia2 or nia1nia2noa1-2 plants. In roots, Cu(2+) caused a decrease of the NO level which was not associated with superoxide and peroxynitrite formation. Inhibition of auxin transport resulted in an increase in NO levels, while exogenous application of an NO donor reduced DR5::GUS expression. The elongation processes of nox1 were not sensitive to Cu(2+), but NO-deficient plants showed diverse growth responses. CONCLUSIONS In plant organs, Cu(2+) excess results in severe morphological responses during which the endogenous hormonal balance and signal transduction are affected. Auxin and NO negatively regulate each others level and NO intensifies the metal-induced cotyledon expansion, but mitigates elongation processes under Cu(2+) exposure.


Journal of Experimental Botany | 2012

Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

Nóra Lehotai; Zsuzsanna Kolbert; Andrea Pető; Gábor Feigl; Attila Ördög; Devanand Kumar; Irma Tari; László Erdei

Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.


Ecotoxicology and Environmental Safety | 2013

Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress.

Gábor Feigl; Devanand Kumar; Nóra Lehotai; Nóra Tugyi; Árpád Molnár; Attila Ördög; Ágnes Szepesi; Katalin Gémes; Gábor Laskay; László Erdei; Zsuzsanna Kolbert

Copper (Cu) is an essential microelement for growth and development, but in excess it can cause toxicity in plants. In this comparative study, the uptake and accumulation of Cu as well as the morphological and physiological responses of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) roots to Cu treatment were investigated. The possible involvement of redox active molecules (reactive oxygen species and nitric oxide) and modification in cell wall structure associated with Cu-induced morphological responses were also studied. In short- and long-term treatments, B. juncea suffered more pronounced growth inhibition as compared with B. napus. In addition to the shortening of primary and lateral roots, the number and the density of the laterals were also decreased by Cu. Exposure to copper induced nitric oxide generation in the root tips and this event proved to be dependent on the duration of the exposure and on the plant species. In short- and long-term treatments, Indian mustard showed more significant activation of superoxide dismutase (SOD), inhibition of ascorbate peroxidase (APX) and oxidation of ascorbate (AsA) than B. napus. Moreover, H2O2-dependent lignification was also observed in the Cu-exposed plants. In longer term, significant AsA accumulation and callose deposition were observed, reflecting serious oxidative stress in B. juncea. Based on the morphological and physiological results, we conclude that rapeseed tolerates Cu excess better than Indian mustard.


Annals of Botany | 2015

Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress

Gábor Feigl; Nóra Lehotai; Árpád Molnár; Attila Ördög; Marta Rodríguez-Ruiz; José M. Palma; Francisco J. Corpas; László Erdei; Zsuzsanna Kolbert

BACKGROUND AND AIMS Zinc (Zn) is an essential micronutrient naturally present in soils, but anthropogenic activities can lead to accumulation in the environment and resulting damage to plants. Heavy metals such as Zn can induce oxidative stress and the generation of reactive oxygen and nitrogen species (ROS and RNS), which can reduce growth and yield in crop plants. This study assesses the interplay of these two families of molecules in order to evaluate the responses in roots of two Brassica species under high concentrations of Zn. METHODS Nine-day-old hydroponically grown Brassica juncea (Indian mustard) and B. napus (oilseed rape) seedlings were treated with ZnSO4 (0, 50, 150 and 300 µm) for 7 d. Stress intensity was assessed through analyses of cell wall damage and cell viability. Biochemical and cellular techniques were used to measure key components of the metabolism of ROS and RNS including lipid peroxidation, enzymatic antioxidants, protein nitration and content of superoxide radical ([Formula: see text]), nitric oxide (NO) and peroxynitrite (ONOO(-)). KEY RESULTS Analysis of morphological root damage and alterations of microelement homeostasis indicate that B. juncea is more tolerant to Zn stress than B. napus. ROS and RNS parameters suggest that the oxidative components are predominant compared with the nitrosative components in the root system of both species. CONCLUSIONS The results indicate a clear relationship between ROS and RNS metabolism as a mechanism of response against stress caused by an excess of Zn. The oxidative stress components seem to be more dominant than the elements of the nitrosative stress in the root system of these two Brassica species.


Acta Biologica Hungarica | 2015

Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage

Gábor Feigl; Devanand Kumar; Nóra Lehotai; Andrea Pető; Árpád Molnár; Éva Rácz; Attila Ördög; László Erdei; Zsuzsanna Kolbert; Gábor Laskay

Hydroponic experiments were conducted to compare the effects of excess copper (Cu) on growth and photosynthesis in young Indian mustard (Brassica juncea) and oilseed rape (Brassica napus). We compared the effects of excess Cu on the two Brassica species at different physiological levels from antioxidant levels to photosynthetic activity. Nine-day-old plants were treated with Cu (10, 25 and 50 μM CuSO4) for 7 and 14 days. Both species took up Cu from the external solution to a similar degree but showed slight root-to-shoot translocation. Furthermore, after seven days of treatment, excess Cu significantly decreased other microelement content, such as iron (Fe) and manganese (Mn), especially in the shoots of B. napus. As a consequence, the leaves of young Brassica napus plants showed decreased concentrations of photosynthetic pigments and more intense growth inhibition; however, accumulation of highly reactive oxygen species (hROS) were not detected. After 14 days of Cu exposure the reduction of Fe and Mn contents and shoot growth proved to be comparable in the two species. Moreover, a significant Cu-induced hROS accumulation was observed in both Brassica species. The diminution in pigment contents and photosynthetic efficiency were more pronounced in B. napus during prolonged Cu exposure. Based on all the parameters, B. juncea appears to be more resistant to excess Cu than B. napus, rendering it a species with higher potential for phytoremediation.


Ecotoxicology and Environmental Safety | 2016

Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and pattern

Gábor Feigl; Zsuzsanna Kolbert; Nóra Lehotai; Árpád Molnár; Attila Ördög; Ádám Bordé; Gábor Laskay; László Erdei

Zinc is an essential microelement, but its excess exerts toxic effects in plants. Heavy metal stress can alter the metabolism of reactive oxygen (ROS) and nitrogen species (RNS) leading to oxidative and nitrosative damages; although the participation of these processes in Zn toxicity and tolerance is not yet known. Therefore this study aimed to evaluate the zinc tolerance of Brassica organs and the putative correspondence of it with protein nitration as a relevant marker for nitrosative stress. Both examined Brassica species (B. juncea and B. napus) proved to be moderate Zn accumulators; however B. napus accumulated more from this metal in its organs. The zinc-induced damages (growth diminution, altered morphology, necrosis, chlorosis, and the decrease of photosynthetic activity) were slighter in the shoot system of B. napus than in B. juncea. The relative zinc tolerance of B. napus shoot was accompanied by moderate changes of the nitration pattern. In contrast, the root system of B. napus suffered more severe damages (growth reduction, altered morphology, viability loss) and slighter increase in nitration level compared to B. juncea. Based on these, the organs of Brassica species reacted differentially to excess zinc, since in the shoot system modification of the nitration pattern occurred (with newly appeared nitrated protein bands), while in the roots, a general increment in the nitroproteome could be observed (the intensification of the same protein bands being present in the control samples). It can be assumed that the significant alteration of nitration pattern is coupled with enhanced zinc sensitivity of the Brassica shoot system and the general intensification of protein nitration in the roots is attached to relative zinc endurance.


Journal of Plant Physiology | 2016

Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P. x canadensis

Dániel Benyó; Edit Horváth; Edit Németh; Tünde Leviczky; Kinga Takács; Nóra Lehotai; Gábor Feigl; Zsuzsanna Kolbert; Attila Ördög; Róbert Gallé; Jolán Csiszár; László Szabados; László Erdei; Ágnes Gallé

Plants have divergent defense mechanisms against the harmful effects of heavy metals present in excess in soils and groundwaters. Poplars (Populus spp.) are widely cultivated because of their rapid growth and high biomass production, and members of the genus are increasingly used as experimental model organisms of trees and for phytoremediation purposes. Our aim was to investigate the copper and zinc stress responses of three outstanding biomass producer bred poplar lines to identify such transcripts of genes involved in the detoxification mechanisms, which can play an important role in the protection against heavy metals. Poplar cuttings were grown hydroponically and subjected to short-term (one week) mild and sublethal copper and zinc stresses. We evaluated the effects of the applied heavy metals and the responses of plants by detecting the changes of multiple physiological and biochemical parameters. The most severe cellular oxidative damage was caused by 30μM copper treatment, while zinc was less harmful. Analysis of stress-related transcripts revealed genotype-specific differences that are likely related to alterations in heavy metal tolerance. P. deltoides clones B-229 and PE 19/66 clones were clearly more effective at inducing the expression of various genes implicated in the detoxification process, such as the glutathione transferases, metallothioneins, ABC transporters, (namely PtGSTU51, PxMT1, PdABCC2,3), while the P. canadensis line M-1 accumulated more metal, resulting in greater cellular oxidative damage. Our results show that all three poplar clones are efficient in stress acclimatization, but with different molecular bases.


Acta Physiologiae Plantarum | 2011

In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem

Nóra Lehotai; Andrea Pető; Szilvia Bajkán; László Erdei; Irma Tari; Zsuzsanna Kolbert


Plant Growth Regulation | 2012

Long-term copper (Cu 2+ ) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L.

Zsuzsanna Kolbert; Andrea Pető; Nóra Lehotai; Gábor Feigl; László Erdei


Plant Cell Reports | 2013

Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis

Andrea Pető; Nóra Lehotai; Gábor Feigl; Nóra Tugyi; Attila Ördög; Katalin Gémes; Irma Tari; László Erdei; Zsuzsanna Kolbert

Collaboration


Dive into the Nóra Lehotai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge