Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nora Ventosa is active.

Publication


Featured researches published by Nora Ventosa.


Journal of Supercritical Fluids | 2003

DELOS process: a crystallization technique using compressed fluids. 1. Comparison to the GAS crystallization method

Nora Ventosa; Santiago Sala; Jaume Veciana

Abstract The depressurization of an expanded liquid organic solution (DELOS) crystallization technique is a new one-step process, which uses a compressed fluid (CF) (e.g. CO 2 ), for the straightforward production of sub-micron- or micron-sized crystalline particles. The driving force of a DELOS crystallization process is the fast, large and extremely homogeneous temperature decrease experienced by a solution, which contains a CF, when it is depressurized from a given working pressure to atmospheric pressure. In contrast to other already reported high-pressure crystallization techniques (RESS, GAS, PCA, PGSS), in a DELOS process the CF behaves as co-solvent over the initial organic solution of the solute to be crystallized. Through a DELOS process it is possible to produce fine powders of a compound provided that a system ‘compound/organic solvent/CF’ in a liquid one-phase state is found. In order to compare DELOS and gas anti-solvent (GAS) procedures, 1,4-bis-( n -butylamino)-9,10-anthraquinone has been crystallized from ‘acetone/CO 2 ’ mixtures by both methods. The crystallization results obtained have been analyzed upon the solubility behavior of 1,4-bis-( n -butylamino)-9,10-anthraquinone in ‘acetone/CO 2 ’ mixtures with different composition. It will be seen how important is the knowledge of the solute solubility behavior in the CO 2 -expanded solvent in order to choose the most convenient crystallization technique (GAS like or DELOS) and the best operational parameters. Finally, it has been experimentally determined which are the operational parameters that control the temperature decrease experienced in a DELOS crystallization. The results obtained have been corroborated through thermodynamic considerations.


Journal of the American Chemical Society | 2011

Tunneling versus Hopping in Mixed-Valence Oligo-p-phenylenevinylene Polychlorinated Bis(triphenylmethyl) Radical Anions

Vega Lloveras; José Vidal-Gancedo; Teresa M. Figueira-Duarte; Jean-François Nierengarten; Juan J. Novoa; Fernando Mota; Nora Ventosa; Concepció Rovira; Jaume Veciana

Radical anions 1(-•)-5(-•), showing different lengths and incorporating up to five p-phenylenevinylene (PPV) bridges between two polychlorinated triphenylmethyl units, have been prepared by chemical or electrochemical reductions from the corresponding diradicals 1-5 which were prepared using Wittig-Horner-type chemistry. Such radical anions enabled us to study, by means of UV-vis-NIR and variable-temperature electron spin resonance spectroscopies, the long-range intramolecular electron transfer (IET) phenomena in their ground states, probing the influence of increasing the lengths of the bridges without the need of using an external bias to promote IET. The temperature dependence of the IET rate constants of mixed-valence species 1(-•)-5(-•) revealed the presence of two different regimes at low and high temperatures in which the mechanisms of electron tunneling via superexchange and thermally activated hopping are competing. Both mechanisms occur to different extents, depending on the sizes of the radical anions, since the lengths of the oligo-PPV bridges notably influence the tunneling efficiency and the activation energy barriers of the hopping processes, the barriers diminishing when the lengths are increased. The nature of solvents also modifies the IET rates by means of the interactions between the oligo-PPV bridges and the solvents. Finally, in the shortest compounds 1(-•) and 2(-•), the IET induced optically through the superexchange mechanism can also be observed by the exhibited intervalence bands, whose intensities decrease with the length of the PPV bridge.


Journal of Colloid and Interface Science | 2010

Cholesterol induced CTAB micelle-to-vesicle phase transitions.

Mary Cano-Sarabia; Angelina Angelova; Nora Ventosa; Sylviane Lesieur; Jaume Veciana

Vesicles prepared by self-assembly of a hydrated mixture of a cationic surfactant (cetyltrimethylammonium bromide) and a lipid (cholesterol) are studied as potential nanocarriers for the delivery of active ingredients. The understanding of the mechanism of the micelle-to-vesicle transition involved in the vesicle formation appears to be crucial regarding the stability of the vesicles as nanovectors. Here, UV-Vis spectroscopy is used to monitor the phase transition from micelles to vesicles promoted by the progressive addition of cholesterol to CTAB micellar solutions. The employed solvatochromic indicator, pinacyanol chloride (PIN), is a cyanine dye that is highly sensitive to the polarity of the medium. The self-assembly between the CTAB and the cholesterol molecules is investigated by means of turbidity (optical density) measurements as well.


Biomaterials | 2010

The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation.

César Díez-Gil; Sven Krabbenborg; Elena García-Fruitós; Esther Vázquez; Escarlata Rodríguez-Carmona; Imma Ratera; Nora Ventosa; Joaquin Seras-Franzoso; Olivia Cano-Garrido; Neus Ferrer-Miralles; Antonio Villaverde; Jaume Veciana

The chemical and mechanical properties of bacterial inclusion bodies, produced in different Escherichia coli genetic backgrounds, have been characterized at the nanoscale level. In regard to wild type, DnaK(-) and ClpA(-) strains produce inclusion bodies with distinguishable wettability, stiffness and stiffness distribution within the proteinaceous particle. Furthermore it was possible to observe how cultured mammalian cells respond differentially to inclusion body variants when used as particulate materials to engineer the nanoscale topography, proving that the actual range of referred mechanical properties is sensed and discriminated by biological systems. The data provide evidence of the mechanistic activity of the cellular quality control network and the regulation of the stereospecific packaging of partially folded protein species in bacteria. This inclusion body nanoscale profiling offers possibilities for their fine genetic tuning and the resulting macroscopic effects when applied in biological interfaces.


Langmuir | 2013

Quatsomes: Vesicles Formed by Self-Assembly of Sterols and Quaternary Ammonium Surfactants

Lidia Ferrer-Tasies; Evelyn Moreno-Calvo; Mary Cano-Sarabia; Marcel Aguilella-Arzo; Angelina Angelova; Sylviane Lesieur; Susagna Ricart; Jordi Faraudo; Nora Ventosa; Jaume Veciana

Thermodynamically stable nanovesicle structures are of high interest for academia and industry in a wide variety of application fields, ranging from preparation of nanomaterials to nanomedicine. Here, we show the ability of quaternary ammonium surfactants and sterols to self-assemble, forming stable amphiphilic bimolecular building-blocks with the appropriate structural characteristics to form in aqueous phases, closed bilayers, named quatsomes, with outstanding stability, with time and temperature. The molecular self-assembling of cholesterol and surfactant cetyltrimethylammonium bromide (CTAB) was studied by quasi-elastic light scattering, cryogenic transmission electron microscopy, turbidity (optical density) measurements, and molecular dynamic simulations with atomistic detail, upon varying the cholesterol-to-surfactant molar ratio. As pure species, CTAB forms micelles and insoluble cholesterol forms crystals in water. However, our molecular dynamic simulations reveal that the synergy between CTAB and cholesterol molecules makes them self-assemble into bimolecular amphiphiles and then into bilayers in the presence of water. These bilayers have the same structure of those formed by double-tailed unimolecular amphiphiles.


Journal of the American Chemical Society | 2012

Influence of the preparation route on the supramolecular organization of lipids in a vesicular system.

Elisa Elizondo; Jannik Larsen; Nikos S. Hatzakis; Ingrid Cabrera; Thomas Bjørnholm; Jaume Veciana; Dimitrios Stamou; Nora Ventosa

A confocal fluorescence microscopy-based assay was used for studying the influence of the preparation route on the supramolecular organization of lipids in a vesicular system. In this work, vesicles composed of cholesterol and CTAB (1/1 mol %) or cholesterol and DOPC (2/8 mol %) and incorporating two membrane dyes were prepared by either a compressed fluid (CF)-based method (DELOS-susp) or a conventional film hydration procedure. They were subsequently immobilized and imaged individually using a confocal fluorescence microscope. Two integrated fluorescence intensities, I(dye1) and I(dye2), were assigned to each tracked vesicle, and their ratio, I(dye1)/I(dye2), was used for quantifying the degree of membrane inhomogeneity between individual vesicles within each sample. A distribution of I(dye1)/I(dye2) values was obtained for all the studied vesicular systems, indicating intrasample heterogeneity. The degree of inhomogeneity (DI) was similar for Chol/DOPC vesicles prepared by both procedures. In contrast, DI was more than double for the hydration method compared to the CF-based method in the case of Chol/CTAB vesicles, which can suffer from lipid demixing during film formation. These findings reveal a more homogeneous vesicle formation path by CFs, which warranted good homogeneity of the vesicular system, independently of the lipid mixture used.


Chemical Society Reviews | 2016

Lipid-based nanovesicles for nanomedicine

N. Grimaldi; Fernanda Andrade; N. Segovia; Lidia Ferrer-Tasies; Santiago Sala; Jaume Veciana; Nora Ventosa

Molecular self-assembly has enabled the fabrication of biologically inspired, advanced nanostructures as lipid-based nanovesicles (L-NVs). The oldest L-NVs, liposomes, have been widely proposed as potential candidates for drug delivery, diagnostic and/or theranostic applications and some liposome-based drug products have already stepped from the lab-bench to the market. This success is attributed to their ability to encapsulate both hydrophobic and/or hydrophilic molecules, efficiently carry and protect them within the body and finally deliver them at the target site. These positive features are also coupled with high biocompatibility. However, liposomes still present some unsolved drawbacks, such as poor colloidal stability, short shelf-life, restricted and expensive conditions of preparation because of the inherent nature of their fundamental constituents (phospholipids). The new tools available in the self-assembly of controlled molecules have significantly advanced the field of L-NV design and synthesis, and non-liposomal L-NVs have been recently developed; this new generation of nanovesicles can represent a paradigm shift in nanomedicine: they may complement liposomes, showing their advantages and overcoming most of their drawbacks. Clearly, being still young, their rocky way to the clinic first and then to the market has just started and it is still long, but they have all the potentialities to reach their objective target. The purpose of this review is to first present the large plethora of L-NVs available, focusing on this new generation of non-liposomal L-NVs and showing their similarities and differences with respect to their ancestors (liposomes). Since the overspread of a nanomaterial to the market is also strongly dependent on the availability of technological-scale preparation methods, we will also extensively review the current approaches exploited for L-NV production. The most cutting-edge approaches based on compressed fluid (CF) technologies will be highlighted here since they show the potential to represent a game-change in the production of L-NVs, favouring their step from the bench to the market. Finally, we will briefly discuss L-NV applications in nanomedicine, looking also for their future perspectives.


Acta Biomaterialia | 2013

Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies

Olivia Cano-Garrido; Escarlata Rodríguez-Carmona; César Díez-Gil; Esther Vázquez; Elisa Elizondo; Rafael Cubarsi; Joaquin Seras-Franzoso; José Luis Corchero; Ursula Rinas; Imma Ratera; Nora Ventosa; Jaume Veciana; Antonio Villaverde; Elena García-Fruitós

Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.


Acta Biomaterialia | 2011

Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections

Edurne Imbuluzqueta; Elisa Elizondo; Carlos Gamazo; Evelyn Moreno-Calvo; Jaume Veciana; Nora Ventosa; María J. Blanco-Prieto

Gentamicin (GEN) is an aminoglycoside antibiotic with a potent antibacterial activity against a wide variety of bacteria. However, its poor cellular penetration limits its use in the treatment of infections caused by intracellular pathogens. One potential strategy to overcome this problem is the use of particulate carriers that can target the intracellular sites of infection. In this study GEN was ion-paired with the anionic AOT surfactant to obtain a hydrophobic complex (GEN-AOT) that was formulated as a particulated material either by the precipitation with a compressed antisolvent (PCA) method or by encapsulation into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The micronization of GEN-AOT by PCA yielded a particulated material with a higher surface area than the non-precipitated complex, while PLGA NPs within a size range of 250-330 nm and a sustained release of the drug over 70 days were obtained by preparing the NPs using the emulsion solvent evaporation method. For the first time, GEN encapsulation efficiency values of ∼100% were achieved for the different NP formulations with no signs of interaction between the drug and the polymer. Finally, in vitro studies against the intracellular bacteria Brucella melitensis, used as a model of intracellular pathogen, demonstrated that the bactericidal activity of GEN was unmodified after ion-pairing, precipitation or encapsulation into NPs. These results encourage their use for treatment for infections caused by GEN-sensitive intracellular bacteria.


Progress in Molecular Biology and Translational Science | 2011

Liposomes and Other Vesicular Systems: Structural Characteristics, Methods of Preparation, and Use in Nanomedicine

Elisa Elizondo; Evelyn Moreno; Ingrid Cabrera; Alba Córdoba; Santiago Sala; Jaume Veciana; Nora Ventosa

Vesicular systems, especially liposomes, have generated a great deal of interest as intelligent materials for the delivery of bioactive molecules since they can be used as sensitive containers that respond to external stimuli, such as pressure, pH, temperature, or concentration changes in the medium, triggering modifications in their supramolecular structure. The control of the nanostructure-particle size and size distribution, membrane morphology, and supramolecular organization-of these self-assembled systems is of profound importance for their application in drug delivery and the discovery of new nanomedicines. This chapter will describe the chemical structure of vesicles and their pharmacological properties, conventional and new vesicle preparation methods and structural characterization, as well as their use in the rational design and fabrication of nanomedicines.

Collaboration


Dive into the Nora Ventosa's collaboration.

Top Co-Authors

Avatar

Santiago Sala

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Concepció Rovira

Institute of Cost and Management Accountants of Bangladesh

View shared research outputs
Researchain Logo
Decentralizing Knowledge