Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norann A. Zaghloul is active.

Publication


Featured researches published by Norann A. Zaghloul.


Nature Genetics | 2007

Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response

Jantje M. Gerdes; Yangfan Liu; Norann A. Zaghloul; Carmen C. Leitch; Shaneka S Lawson; Masaki Kato; Philip A. Beachy; Philip L. Beales; Shannon Fisher; Jose L. Badano; Nicholas Katsanis

Primary cilia and basal bodies are evolutionarily conserved organelles that mediate communication between the intracellular and extracellular environments. Here we show that bbs1, bbs4 and mkks (also known as bbs6), which encode basal body proteins, are required for convergence and extension in zebrafish and interact with wnt11 and wnt5b. Suppression of bbs1, bbs4 and mkks transcripts results in stabilization of β-catenin with concomitant upregulation of T-cell factor (TCF)-dependent transcription in both zebrafish embryos and mammalian ciliated cells, a defect phenocopied by the silencing of the axonemal kinesin subunit KIF3A but not by chemical disruption of the cytoplasmic microtubule network. These observations are attributable partly to defective degradation by the proteasome; suppression of BBS4 leads to perturbed proteasomal targeting and concomitant accumulation of cytoplasmic β-catenin. Cumulatively, our data indicate that the basal body is an important regulator of Wnt signal interpretation through selective proteolysis and suggest that defects in this system may contribute to phenotypes pathognomonic of human ciliopathies.


Nature Genetics | 2008

Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome

Carmen C. Leitch; Norann A. Zaghloul; Erica E. Davis; Corinne Stoetzel; Anna Diaz-Font; Suzanne Rix; Majid Alfadhel; Richard Alan Lewis; Wafaa Eyaid; Eyal Banin; Hélène Dollfus; Philip L. Beales; Jose L. Badano; Nicholas Katsanis

Meckel-Gruber syndrome (MKS) is a genetically heterogeneous, neonatally lethal malformation and the most common form of syndromic neural tube defect (NTD). To date, several MKS-associated genes have been identified whose protein products affect ciliary function. Here we show that mutations in MKS1, MKS3 and CEP290 (also known as NPHP6) either can cause Bardet-Biedl syndrome (BBS) or may have a potential epistatic effect on mutations in known BBS-associated loci. Five of six families with both MKS1 and BBS mutations manifested seizures, a feature that is not a typical component of either syndrome. Functional studies in zebrafish showed that mks1 is necessary for gastrulation movements and that it interacts genetically with known bbs genes. Similarly, we found two families with missense or splice mutations in MKS3, in one of which the affected individual also bears a homozygous nonsense mutation in CEP290 that is likely to truncate the C terminus of the protein. These data extend the genetic stratification of ciliopathies and suggest that BBS and MKS, although distinct clinically, are allelic forms of the same molecular spectrum.


Journal of Clinical Investigation | 2009

Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy

Norann A. Zaghloul; Nicholas Katsanis

Bardet-Biedl syndrome (BBS) is a multisystemic disorder typified by developmental and progressive degenerative defects. A combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology, which has in turn contributed to the improved understanding of the functions of the primary cilium in humans and other vertebrates. Here we discuss the evidence linking the clinical BBS phenotype to ciliary defects, highlight how the genetic and cellular characteristics of BBS overlap with and inform other ciliary disorders, and explore the possible mechanistic underpinnings of ciliary dysfunction.


American Journal of Human Genetics | 2007

Identification of a Novel BBS Gene (BBS12) Highlights the Major Role of a Vertebrate-Specific Branch of Chaperonin-Related Proteins in Bardet-Biedl Syndrome

Corinne Stoetzel; Jean Muller; Virginie Laurier; Erica E. Davis; Norann A. Zaghloul; Serge Vicaire; Cécile Jacquelin; Frédéric Plewniak; Carmen C. Leitch; Pierre Sarda; Christian P. Hamel; Thomy de Ravel; Richard Alan Lewis; Evelyne Friederich; Christelle Thibault; Jean-Marc Danse; Alain Verloes; Dominique Bonneau; Nicholas Katsanis; Olivier Poch; Jean-Louis Mandel; Hélène Dollfus

Bardet-Biedl syndrome (BBS) is primarily an autosomal recessive ciliopathy characterized by progressive retinal degeneration, obesity, cognitive impairment, polydactyly, and kidney anomalies. The disorder is genetically heterogeneous, with 11 BBS genes identified to date, which account for ~70% of affected families. We have combined single-nucleotide-polymorphism array homozygosity mapping with in silico analysis to identify a new BBS gene, BBS12. Patients from two Gypsy families were homozygous and haploidentical in a 6-Mb region of chromosome 4q27. FLJ35630 was selected as a candidate gene, because it was predicted to encode a protein with similarity to members of the type II chaperonin superfamily, which includes BBS6 and BBS10. We found pathogenic mutations in both Gypsy families, as well as in 14 other families of various ethnic backgrounds, indicating that BBS12 accounts for approximately 5% of all BBS cases. BBS12 is vertebrate specific and, together with BBS6 and BBS10, defines a novel branch of the type II chaperonin superfamily. These three genes are characterized by unusually rapid evolution and are likely to perform ciliary functions specific to vertebrates that are important in the pathophysiology of the syndrome, and together they account for about one-third of the total BBS mutational load. Consistent with this notion, suppression of each family member in zebrafish yielded gastrulation-movement defects characteristic of other BBS morphants, whereas simultaneous suppression of all three members resulted in severely affected embryos, possibly hinting at partial functional redundancy within this protein family.


Nature Cell Biology | 2011

Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry

Sehyun Kim; Norann A. Zaghloul; Ekaterina Bubenshchikova; Edwin C. Oh; Susannah Rankin; Nicholas Katsanis; Tomoko Obara; Leonidas Tsiokas

The primary cilium is an antenna-like organelle that is dynamically regulated during the cell cycle. Ciliogenesis is initiated as cells enter quiescence, whereas resorption of the cilium precedes mitosis. The mechanisms coordinating ciliogenesis with the cell cycle are unknown. Here we identify the centrosomal protein Nde1 (nuclear distribution gene E homologue 1) as a negative regulator of ciliary length. Nde1 is expressed at high levels in mitosis, low levels in quiescence and localizes at the mother centriole, which nucleates the primary cilium. Cells depleted of Nde1 have longer cilia and a delay in cell cycle re-entry that correlates with ciliary length. Knockdown of Nde1 in zebrafish embryos results in increased ciliary length, suppression of cell division, reduction of the number of cells forming the Kupffers vesicle and left–right patterning defects. These data suggest that Nde1 is an integral component of a network coordinating ciliary length with cell cycle progression and have implications for understanding the transition from a quiescent to a proliferative state.


American Journal of Human Genetics | 2010

Missense Mutations in TCF8 Cause Late-Onset Fuchs Corneal Dystrophy and Interact with FCD4 on Chromosome 9p

S. Amer Riazuddin; Norann A. Zaghloul; Amr Al-Saif; Lisa Davey; Bill H. Diplas; Danielle N. Meadows; Allen O. Eghrari; Mollie A. Minear; Yi-Ju Li; Gordon K. Klintworth; Natalie A. Afshari; Simon G. Gregory; John D. Gottsch; Nicholas Katsanis

Fuchs corneal dystrophy (FCD) is a degenerative genetic disorder of the corneal endothelium that represents one of the most common causes of corneal transplantation in the United States. Despite its high prevalence (4% over the age of 40), the underlying genetic basis of FCD is largely unknown. Here we report missense mutations in TCF8, a transcription factor whose haploinsufficiency causes posterior polymorphous corneal dystrophy (PPCD), in a cohort of late-onset FCD patients. In contrast to PPCD-causing mutations, all of which are null, FCD-associated mutations encode rare missense changes suggested to cause loss of function by an in vivo complementation assay. Importantly, segregation of a recurring p.Q840P mutation in a large, multigenerational FCD pedigree showed this allele to be sufficient but not necessary for pathogenesis. Execution of a genome-wide scan conditioned for the presence of the 840P allele identified an additional late-onset FCD locus on chromosome 9p, whereas haplotype analysis indicated that the presence of the TCF8 allele and the disease haplotype on 9p leads to a severe FCD manifestation with poor prognosis. Our data suggest that PPCD and FCD are allelic variants of the same disease continuum and that genetic interaction between genes that cause corneal dystrophies can modulate the expressivity of the phenotype.


Trends in Genetics | 2010

Functional modules, mutational load and human genetic disease

Norann A. Zaghloul; Nicholas Katsanis

The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet–Biedl syndrome

Norann A. Zaghloul; Yangjian Liu; Jantje M. Gerdes; Cecilia Gascue; Edwin C. Oh; Carmen C. Leitch; Yana Bromberg; Jonathan Binkley; Rudolph L. Leibel; Arend Sidow; Jose L. Badano; Nicholas Katsanis

Technological advances hold the promise of rapidly catalyzing the discovery of pathogenic variants for genetic disease. However, this possibility is tempered by limitations in interpreting the functional consequences of genetic variation at candidate loci. Here, we present a systematic approach, grounded on physiologically relevant assays, to evaluate the mutational content (125 alleles) of the 14 genes associated with Bardet–Biedl syndrome (BBS). A combination of in vivo assays with subsequent in vitro validation suggests that a significant fraction of BBS-associated mutations have a dominant-negative mode of action. Moreover, we find that a subset of common alleles, previously considered to be benign, are, in fact, detrimental to protein function and can interact with strong rare alleles to modulate disease presentation. These data represent a comprehensive evaluation of genetic load in a multilocus disease. Importantly, superimposition of these results to human genetics data suggests a previously underappreciated complexity in disease architecture that might be shared among diverse clinical phenotypes.


Genesis | 2011

The emerging face of primary cilia

Norann A. Zaghloul; Samantha A. Brugmann

Primary cilia are microtubule‐based organelles that serve as hubs for the transduction of various developmental signaling pathways includingHedgehog, Wnt, FGF, and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt. genesis 49:231–246, 2011.


Journal of Cell Science | 2014

Basal body proteins regulate Notch signaling through endosomal trafficking.

Carmen C. Leitch; Sukanya Lodh; Victoria Prieto-Echagüe; Jose L. Badano; Norann A. Zaghloul

ABSTRACT Proteins associated with primary cilia and basal bodies mediate numerous signaling pathways, but little is known about their role in Notch signaling. Here, we report that loss of the Bardet-Biedl syndrome proteins BBS1 or BBS4 produces increased Notch-directed transcription in a zebrafish reporter line and in human cell lines. Pathway overactivation is accompanied by reduced localization of Notch receptor at both the plasma membrane and the cilium. In Drosophila mutants, overactivation of Notch can result from receptor accumulation in endosomes, and recent studies implicate ciliary proteins in endosomal trafficking, suggesting a possible mechanism by which overactivation occurs in BBS mutants. Consistent with this, we observe genetic interaction of BBS1 and BBS4 with the endosomal sorting complexes required for transport (ESCRT) gene TSG101 and accumulation of receptor in late endosomes, reduced endosomal recycling and reduced receptor degradation in lysosomes. We observe similar defects with disruption of BBS3. Loss of another basal body protein, ALMS1, also enhances Notch activation and the accumulation of receptor in late endosomes, but does not disrupt recycling. These findings suggest a role for these proteins in the regulation of Notch through endosomal trafficking of the receptor.

Collaboration


Dive into the Norann A. Zaghloul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge