Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norbert Hubner is active.

Publication


Featured researches published by Norbert Hubner.


PLOS ONE | 2010

Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility

Tanja Zeller; Philipp S. Wild; Silke Szymczak; Maxime Rotival; Arne Schillert; Raphaële Castagné; Seraya Maouche; Marine Germain; Karl J. Lackner; Heidi Rossmann; Medea Eleftheriadis; Christoph Sinning; Renate B. Schnabel; Edith Lubos; Detlev Mennerich; Werner Rust; Claire Perret; Carole Proust; Viviane Nicaud; Joseph Loscalzo; Norbert Hubner; David Tregouet; Thomas Münzel; Andreas Ziegler; Laurence Tiret; Stefan Blankenberg; François Cambien

Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment.


Nature Genetics | 2005

Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease

Norbert Hubner; Caroline A. Wallace; Heike Zimdahl; Enrico Petretto; Herbert Schulz; Fiona Maciver; Michael Mueller; Oliver Hummel; Jan Monti; Vaclav Zidek; Alena Musilova; Vladimir Kren; Helen C. Causton; Gabriele Born; Sabine Schmidt; Anita Müller; Stuart A. Cook; Theodore W. Kurtz; John C. Whittaker; Michal Pravenec; Timothy J. Aitman

Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.


Nature Genetics | 2007

Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus

Min Ae Lee-Kirsch; Maolian Gong; Dipanjan Chowdhury; Lydia Senenko; Kerstin Engel; Young-Ae Lee; Udesh de Silva; Suzanna L. Bailey; Torsten Witte; Timothy J. Vyse; Juha Kere; Christiane Pfeiffer; Scott Harvey; Andrew Wong; Sari Koskenmies; Oliver Hummel; Klaus Rohde; Reinhold E. Schmidt; Anna F. Dominiczak; Manfred Gahr; Thomas Hollis; Fred W. Perrino; Judy Lieberman; Norbert Hubner

TREX1 acts in concert with the SET complex in granzyme A–mediated apoptosis, and mutations in TREX1 cause Aicardi-Goutières syndrome and familial chilblain lupus. Here, we report monoallelic frameshift or missense mutations and one 3′ UTR variant of TREX1 present in 9/417 individuals with systemic lupus erythematosus but absent in 1,712 controls (P = 4.1 × 10−7). We demonstrate that two mutant TREX1 alleles alter subcellular targeting. Our findings implicate TREX1 in the pathogenesis of SLE.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy

Cemil Özcelik; Bettina Erdmann; Bernhard Pilz; Nina Wettschureck; Stefan Britsch; Norbert Hubner; Kenneth R. Chien; Carmen Birchmeier; Alistair N. Garratt

The ErbB2 (Her2) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre-loxP technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies.


Cell | 2005

Role of endocytosis in cellular uptake of sex steroids

Annette Hammes; Thomas K. Andreassen; Robert Spoelgen; Jens Raila; Norbert Hubner; Herbert Schulz; Jochen Metzger; Florian J. Schweigert; Peter B. Luppa; Andreas Nykjaer; Thomas E. Willnow

Androgens and estrogens are transported bound to the sex hormone binding globulin (SHBG). SHBG is believed to keep sex steroids inactive and to control the amount of free hormones that enter cells by passive diffusion. Contrary to the free hormone hypothesis, we demonstrate that megalin, an endocytic receptor in reproductive tissues, acts as a pathway for cellular uptake of biologically active androgens and estrogens bound to SHBG. In line with this function, lack of receptor expression in megalin knockout mice results in impaired descent of the testes into the scrotum in males and blockade of vagina opening in females. Both processes are critically dependent on sex-steroid signaling, and similar defects are seen in animals treated with androgen- or estrogen-receptor antagonists. Thus, our findings uncover the existence of endocytic pathways for protein bound androgens and estrogens and their crucial role in development of the reproductive organs.


Nature Genetics | 2008

Progress and prospects in rat genetics: a community view

Timothy J. Aitman; John K. Critser; Edwin Cuppen; Anna F. Dominiczak; Xosé M. Fernández-Suárez; Jonathan Flint; Dominique Gauguier; Aron M. Geurts; Michael N. Gould; Peter C. Harris; Rikard Holmdahl; Norbert Hubner; Zsuzsanna Izsvák; Howard J. Jacob; Takashi Kuramoto; Anne E. Kwitek; Anna Marrone; Tomoji Mashimo; Carol Moreno; John J. Mullins; Linda J. Mullins; Tomas Olsson; Michal Pravenec; Lela K. Riley; Kathrin Saar; Tadao Serikawa; James D Shull; Claude Szpirer; Simon N. Twigger; Birger Voigt

The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.


Nature Genetics | 2009

A common variant on chromosome 11q13 is associated with atopic dermatitis.

Stephan Weidinger; Regina Fölster-Holst; Anja Bauerfeind; Franz Rüschendorf; Giannino Patone; Klaus Rohde; Ingo Marenholz; Florian Schulz; Tamara Kerscher; Norbert Hubner; Ulrich Wahn; Stefan Schreiber; Andre Franke; Rainer Vogler; Simon Heath; Hansjörg Baurecht; Natalija Novak; Elke Rodriguez; Thomas Illig; Min-Ae Lee-Kirsch; Andrzej Ciechanowicz; Michael Kurek; T. Piskackova; Milan Macek; Young-Ae Lee; Andreas Ruether

We conducted a genome-wide association study in 939 individuals with atopic dermatitis and 975 controls as well as 270 complete nuclear families with two affected siblings. SNPs consistently associated with atopic dermatitis in both discovery sets were then investigated in two additional independent replication sets totalling 2,637 cases and 3,957 controls. Highly significant association was found with allele A of rs7927894 on chromosome 11q13.5, located 38 kb downstream of C11orf30 (Pcombined = 7.6 × 10−10). Approximately 13% of individuals of European origin are homozygous for rs7927894[A], and their risk of developing atopic dermatitis is 1.47 times that of noncarriers.


Nature Medicine | 2012

RBM20 , a gene for hereditary cardiomyopathy, regulates titin splicing

Wei Guo; Sebastian Schafer; Marion L. Greaser; Michael H. Radke; Martin Liss; Thirupugal Govindarajan; Henrike Maatz; Herbert Schulz; Shijun Li; Amanda M. Parrish; Vita Dauksaite; Padmanabhan Vakeel; Sabine Klaassen; Brenda Gerull; Ludwig Thierfelder; Vera Regitz-Zagrosek; Timothy A. Hacker; Kurt W. Saupe; G. William Dec; Patrick T. Ellinor; Calum A. MacRae; Bastian Spallek; Robert S. Fischer; Andreas Perrot; Cemil Özcelik; Kathrin Saar; Norbert Hubner; Michael Gotthardt

Alternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20-dependent regulation of alternative splicing. In addition to titin (TTN), we identified a set of 30 genes with conserved splicing regulation between humans and rats. This network is enriched for genes that have previously been linked to cardiomyopathy, ion homeostasis and sarcomere biology. Our studies emphasize the key role of post-transcriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure.


Cell Stem Cell | 2009

A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

Li Ding; Maciej Paszkowski-Rogacz; Anja Nitzsche; Mikolaj Slabicki; Anne Kristin Heninger; Ingrid de Vries; Ralf Kittler; Magno Junqueira; Andrej Shevchenko; Herbert Schulz; Norbert Hubner; Michael Xavier Doss; Agapios Sachinidis; Juergen Hescheler; Roberto Iacone; Konstantinos Anastassiadis; A. Francis Stewart; M. Teresa Pisabarro; Antonio Caldarelli; Ina Poser; Mirko Theis; Frank Buchholz

Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.


Nature | 2010

A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

Matthias Heinig; Enrico Petretto; Chris Wallace; Leonardo Bottolo; Maxime Rotival; Han Lu; Yoyo Li; Rizwan Sarwar; Sarah R. Langley; Anja Bauerfeind; Oliver Hummel; Young-Ae Lee; Svetlana Paskas; Carola Rintisch; Kathrin Saar; Jason D. Cooper; Rachel Buchan; Elizabeth E. Gray; Jason G. Cyster; Jeanette Erdmann; Christian Hengstenberg; Seraya Maouche; Willem H. Ouwehand; Catherine M. Rice; Nilesh J. Samani; Heribert Schunkert; Alison H. Goodall; Herbert Schulz; Helge G. Roider; Martin Vingron

Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein–Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)—a macrophage-associated autoimmune disease—than randomly selected immune response genes (P = 8.85 × 10−6). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 × 10−10; odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.

Collaboration


Dive into the Norbert Hubner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathrin Saar

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Franz Rüschendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart A. Cook

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Oliver Hummel

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Sebastian Schafer

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Michal Pravenec

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge