Norbert Moldován
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norbert Moldován.
Scientific Reports | 2017
Dóra Tombácz; Zsolt Balázs; Zsolt Csabai; Norbert Moldován; Attila Szűcs; Donald Sharon; Michael Snyder; Zsolt Boldogkői
Herpesvirus gene expression is co-ordinately regulated and sequentially ordered during productive infection. The viral genes can be classified into three distinct kinetic groups: immediate-early, early, and late classes. In this study, a massively parallel sequencing technique that is based on PacBio Single Molecule Real-time sequencing platform, was used for quantifying the poly(A) fraction of the lytic transcriptome of pseudorabies virus (PRV) throughout a 12-hour interval of productive infection on PK-15 cells. Other approaches, including microarray, real-time RT-PCR and Illumina sequencing are capable of detecting only the aggregate transcriptional activity of particular genomic regions, but not individual herpesvirus transcripts. However, SMRT sequencing allows for a distinction between transcript isoforms, including length- and splice variants, as well as between overlapping polycistronic RNA molecules. The non-amplified Isoform Sequencing (Iso-Seq) method was used to analyse the kinetic properties of the lytic PRV transcripts and to then classify them accordingly. Additionally, the present study demonstrates the general utility of long-read sequencing for the time-course analysis of global gene expression in practically any organism.
Frontiers in Microbiology | 2017
Dóra Tombácz; Zsolt Csabai; Attila Szűcs; Zsolt Balázs; Norbert Moldován; Donald Sharon; Michael Snyder; Zsolt Boldogkői
In this study, we used the amplified isoform sequencing technique from Pacific Biosciences to characterize the poly(A)+ fraction of the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). Our analysis detected 34 formerly unidentified protein-coding genes, 10 non-coding RNAs, as well as 17 polycistronic and complex transcripts. This work also led us to identify many transcript isoforms, including 13 splice and 68 transcript end variants, as well as several transcript overlaps. Additionally, we determined previously unascertained transcriptional start and polyadenylation sites. We analyzed the transcriptional activity from the complementary DNA strand in five convergent HSV gene pairs with quantitative RT-PCR and detected antisense RNAs in each gene. This part of the study revealed an inverse correlation between the expressions of convergent partners. Our work adds new insights for understanding the complexity of the pervasive transcriptional overlaps by suggesting that there is a crosstalk between adjacent and distal genes through interaction between their transcription apparatuses. We also identified transcripts overlapping the HSV replication origins, which may indicate an interplay between the transcription and replication machineries. The relative abundance of HSV-1 transcripts has also been established by using a novel method based on the calculation of sequencing reads for the analysis.
Frontiers in Microbiology | 2018
Norbert Moldován; Dóra Tombácz; Attila Szűcs; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
Third-generation sequencing is an emerging technology that is capable of solving several problems that earlier approaches were not able to, including the identification of transcripts isoforms and overlapping transcripts. In this study, we used long-read sequencing for the analysis of pseudorabies virus (PRV) transcriptome, including Oxford Nanopore Technologies MinION, PacBio RS-II, and Illumina HiScanSQ platforms. We also used data from our previous short-read and long-read sequencing studies for the comparison of the results and in order to confirm the obtained data. Our investigations identified 19 formerly unknown putative protein-coding genes, all of which are 5′ truncated forms of earlier annotated longer PRV genes. Additionally, we detected 19 non-coding RNAs, including 5′ and 3′ truncated transcripts without in-frame ORFs, antisense RNAs, as well as RNA molecules encoded by those parts of the viral genome where no transcription had been detected before. This study has also led to the identification of three complex transcripts and 50 distinct length isoforms, including transcription start and end variants. We also detected 121 novel transcript overlaps, and two transcripts that overlap the replication origins of PRV. Furthermore, in silico analysis revealed 145 upstream ORFs, many of which are located on the longer 5′ isoforms of the transcripts.
Scientific Data | 2018
Dóra Tombácz; Donald Sharon; Attila Szűcs; Norbert Moldován; Michael Snyder; Zsolt Boldogkői
Pseudorabies virus (PRV) is an alphaherpesvirus of swine. PRV has a large double-stranded DNA genome and, as the latest investigations have revealed, a very complex transcriptome. Here, we present a large RNA-Seq dataset, derived from both short- and long-read sequencing. The dataset contains 1.3 million 100 bp paired-end reads that were obtained from the Illumina random-primed libraries, as well as 10 million 50 bp single-end reads generated by the Illumina polyA-seq. The Pacific Biosciences RSII non-amplified method yielded 57,021 reads of inserts (ROIs) aligned to the viral genome, the amplified method resulted in 158,396 PRV-specific ROIs, while we obtained 12,555 ROIs using the Sequel platform. The Oxford Nanopore’s MinION device generated 44,006 reads using their regular cDNA-sequencing method, whereas 29,832 and 120,394 reads were produced by using the direct RNA-sequencing and the Cap-selection protocols, respectively. The raw reads were aligned to the PRV reference genome (KJ717942.1). Our provided dataset can be used to compare different sequencing approaches, library preparation methods, as well as for validation and testing bioinformatic pipelines.
bioRxiv | 2018
István Prazsák; Norbert Moldován; Dóra Tombácz; Klára Megyeri; Attila Szucs; Zsolt Csabai; Zsolt Boldogkoi
Background Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. Results In this work, we report the analysis of VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 27 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the VZV latency transcript (VLT) exhibits a more complex structural variation than formerly believed. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. Conclusions Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.
Scientific Reports | 2018
Norbert Moldován; Dóra Tombácz; Attila Szűcs; Zsolt Csabai; Zsolt Balázs; Emese Kis; Judit Molnár; Zsolt Boldogkői
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an insect-pathogen baculovirus. In this study, we applied the Oxford Nanopore Technologies platform for the analysis of the polyadenylated fraction of the viral transcriptome using both cDNA and direct RNA sequencing methods. We identified and annotated altogether 132 novel transcripts and transcript isoforms, including 4 coding and 4 non-coding RNA molecules, 47 length variants, 5 splice isoforms, as well as 23 polycistronic and 49 complex transcripts. All of the identified novel protein-coding genes were 5′-truncated forms of longer host genes. In this work, we demonstrated that in the case of transcript start site isoforms, the promoters and the initiator sequence of the longer and shorter variants belong to the same kinetic class. Long-read sequencing also revealed a complex meshwork of transcriptional overlaps, the function of which needs to be clarified. Additionally, we developed bioinformatics methods to improve the transcript annotation and to eliminate the non-specific transcription reads generated by template switching and false priming.
Fems Microbiology Letters | 2018
Norbert Moldován; Attila Szűcs; Dóra Tombácz; Zsolt Balázs; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
In this study, we applied short- and long-read RNA sequencing techniques, as well as PCR analysis to investigate the transcriptome of the porcine endogenous retrovirus (PERV) expressed from cultured porcine kidney cell line PK-15. This analysis has revealed six novel transcripts and eight transcript isoforms, including five length and three splice variants. We were able to establish whether a deletion in a transcript is the result of the splicing of mRNAs or of genomic deletion in one of the PERV clones. Additionally, we re-annotated the formerly identified RNA molecules. Our analysis revealed a higher complexity of PERV transcriptome than it was earlier believed.
Genome Announcements | 2017
Dóra Tombácz; Norbert Moldován; Zsolt Balázs; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
ABSTRACT Porcine circovirus type 1 (PCV1) is a nonpathogenic circovirus, and a contaminant of the porcine kidney (PK-15) cell line. We present the complete and annotated genome sequence of strain Szeged of PCV1, determined by Pacific Biosciences RSII long-read sequencing platform.
Virus Research | 2017
Norbert Moldován; Zsolt Balázs; Dóra Tombácz; Zsolt Csabai; Attila Szűcs; Michael Snyder; Zsolt Boldogkői
Archive | 2018
Dóra Tombácz; Donald Sharon; Attila Szűcs; Norbert Moldován; Michael Snyder; Zsolt Boldogkői