Zsolt Csabai
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zsolt Csabai.
PLOS ONE | 2016
Dóra Tombácz; Zsolt Csabai; Péter Oláh; Zsolt Balázs; István Likó; Laura Zsigmond; Donald Sharon; Michael Snyder; Zsolt Boldogkői
Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation of the viral genes. The analyses revealed a previously unrecognized complexity of the PRV transcriptome including the discovery of novel protein-coding and non-coding genes, novel mono- and polycistronic transcription units, as well as extensive transcriptional overlaps between neighboring and distal genes. This study identified non-coding transcripts overlapping all three replication origins of the PRV, which might play a role in the control of DNA synthesis. We additionally established the relative expression levels of gene products. Our investigations revealed that the whole PRV genome is utilized for transcription, including both DNA strands in all coding and intergenic regions. The genome-wide occurrence of transcript overlaps suggests a crosstalk between genes through a network formed by interacting transcriptional machineries with a potential function in the control of gene expression.
BMC Microbiology | 2015
Péter Oláh; Dóra Tombácz; Nándor Póka; Zsolt Csabai; István Prazsák; Zsolt Boldogkői
BackgroundPseudorabies virus is a widely-studied model organism of the Herpesviridae family, with a compact genome arrangement of 72 known coding sequences. In order to obtain an up-to-date genetic map of the virus, a combination of RNA-sequencing approaches were applied, as recent advancements in high-throughput sequencing methods have provided a wealth of information on novel RNA species and transcript isoforms, revealing additional layers of transcriptome complexity in several viral species.ResultsThe total RNA content and polyadenylation landscape of pseudorabies virus were characterized for the first time at high coverage by Illumina high-throughput sequencing of cDNA samples collected during the lytic infectious cycle. As anticipated, nearly all of the viral genome was transcribed, with the exception of loci in the large internal and terminal repeats, and several small intergenic repetitive sequences. Our findings included a small novel polyadenylated non-coding RNA near an origin of replication, and the single-base resolution mapping of 3′ UTRs across the viral genome. Alternative polyadenylation sites were found in a number of genes and a novel alternative splice site was characterized in the ep0 gene, while previously known splicing events were confirmed, yielding no alternative splice isoforms. Additionally, we detected the active polyadenylation of transcripts earlier believed to be transcribed as part of polycistronic RNAs.ConclusionTo the best of our knowledge, the present work has furnished the highest-resolution transcriptome map of an alphaherpesvirus to date, and reveals further complexities of viral gene expression, with the identification of novel transcript boundaries, alternative splicing of the key transactivator EP0, and a highly abundant, novel non-coding RNA near the lytic replication origin. These advances provide a detailed genetic map of PRV for future research.
Genome Announcements | 2014
Dóra Tombácz; Donald Sharon; Péter Oláh; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
ABSTRACT Pseudorabies virus (PRV) is a neurotropic herpesvirus that causes Aujeszkys disease in pigs. PRV strains are widely used as transsynaptic tracers for mapping neural circuits. We present here the complete and fully annotated genome sequence of strain Kaplan of PRV, determined by Pacific Biosciences RSII long-read sequencing technology.
Scientific Reports | 2017
Dóra Tombácz; Zsolt Balázs; Zsolt Csabai; Norbert Moldován; Attila Szűcs; Donald Sharon; Michael Snyder; Zsolt Boldogkői
Herpesvirus gene expression is co-ordinately regulated and sequentially ordered during productive infection. The viral genes can be classified into three distinct kinetic groups: immediate-early, early, and late classes. In this study, a massively parallel sequencing technique that is based on PacBio Single Molecule Real-time sequencing platform, was used for quantifying the poly(A) fraction of the lytic transcriptome of pseudorabies virus (PRV) throughout a 12-hour interval of productive infection on PK-15 cells. Other approaches, including microarray, real-time RT-PCR and Illumina sequencing are capable of detecting only the aggregate transcriptional activity of particular genomic regions, but not individual herpesvirus transcripts. However, SMRT sequencing allows for a distinction between transcript isoforms, including length- and splice variants, as well as between overlapping polycistronic RNA molecules. The non-amplified Isoform Sequencing (Iso-Seq) method was used to analyse the kinetic properties of the lytic PRV transcripts and to then classify them accordingly. Additionally, the present study demonstrates the general utility of long-read sequencing for the time-course analysis of global gene expression in practically any organism.
Viruses | 2015
Dóra Tombácz; Zsolt Csabai; Péter Oláh; Zoltán Havelda; Donald Sharon; Michael Snyder; Zsolt Boldogkői
In this study we identified two 3′-coterminal RNA molecules in the pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio RSII system. It emerged that transcription of the CTOs is fully dependent on the viral transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an interaction between the transcription and replication machineries at this genomic location, which might play an important role in the regulation of DNA synthesis.
Scientific Reports | 2017
Zsolt Balázs; Dóra Tombácz; Attila Szűcs; Zsolt Csabai; Klára Megyeri; Alexey Petrov; Michael Snyder; Zsolt Boldogkői
The human cytomegalovirus (HCMV) is a ubiquitous, human pathogenic herpesvirus. The complete viral genome is transcriptionally active during infection; however, a large part of its transcriptome has yet to be annotated. In this work, we applied the amplified isoform sequencing technique from Pacific Biosciences to characterize the lytic transcriptome of HCMV strain Towne varS. We developed a pipeline for transcript annotation using long-read sequencing data. We identified 248 transcriptional start sites, 116 transcriptional termination sites and 80 splicing events. Using this information, we have annotated 291 previously undescribed or only partially annotated transcript isoforms, including eight novel antisense transcripts and their isoforms, as well as a novel transcript (RS2) in the short repeat region, partially antisense to RS1. Similarly to other organisms, we discovered a high transcriptional diversity in HCMV, with many transcripts only slightly differing from one another. Comparing our transcriptome profiling results to an earlier ribosome footprint analysis, we have concluded that the majority of the transcripts contain multiple translationally active ORFs, and also that most isoforms contain unique combinations of ORFs. Based on these results, we propose that one important function of this transcriptional diversity may be to provide a regulatory mechanism at the level of translation.
Frontiers in Microbiology | 2017
Dóra Tombácz; Zsolt Csabai; Attila Szűcs; Zsolt Balázs; Norbert Moldován; Donald Sharon; Michael Snyder; Zsolt Boldogkői
In this study, we used the amplified isoform sequencing technique from Pacific Biosciences to characterize the poly(A)+ fraction of the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). Our analysis detected 34 formerly unidentified protein-coding genes, 10 non-coding RNAs, as well as 17 polycistronic and complex transcripts. This work also led us to identify many transcript isoforms, including 13 splice and 68 transcript end variants, as well as several transcript overlaps. Additionally, we determined previously unascertained transcriptional start and polyadenylation sites. We analyzed the transcriptional activity from the complementary DNA strand in five convergent HSV gene pairs with quantitative RT-PCR and detected antisense RNAs in each gene. This part of the study revealed an inverse correlation between the expressions of convergent partners. Our work adds new insights for understanding the complexity of the pervasive transcriptional overlaps by suggesting that there is a crosstalk between adjacent and distal genes through interaction between their transcription apparatuses. We also identified transcripts overlapping the HSV replication origins, which may indicate an interplay between the transcription and replication machineries. The relative abundance of HSV-1 transcripts has also been established by using a novel method based on the calculation of sequencing reads for the analysis.
Frontiers in Microbiology | 2018
Norbert Moldován; Dóra Tombácz; Attila Szűcs; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
Third-generation sequencing is an emerging technology that is capable of solving several problems that earlier approaches were not able to, including the identification of transcripts isoforms and overlapping transcripts. In this study, we used long-read sequencing for the analysis of pseudorabies virus (PRV) transcriptome, including Oxford Nanopore Technologies MinION, PacBio RS-II, and Illumina HiScanSQ platforms. We also used data from our previous short-read and long-read sequencing studies for the comparison of the results and in order to confirm the obtained data. Our investigations identified 19 formerly unknown putative protein-coding genes, all of which are 5′ truncated forms of earlier annotated longer PRV genes. Additionally, we detected 19 non-coding RNAs, including 5′ and 3′ truncated transcripts without in-frame ORFs, antisense RNAs, as well as RNA molecules encoded by those parts of the viral genome where no transcription had been detected before. This study has also led to the identification of three complex transcripts and 50 distinct length isoforms, including transcription start and end variants. We also detected 121 novel transcript overlaps, and two transcripts that overlap the replication origins of PRV. Furthermore, in silico analysis revealed 145 upstream ORFs, many of which are located on the longer 5′ isoforms of the transcripts.
Scientific Reports | 2017
Dóra Tombácz; Zoltán Maróti; Tibor Kalmár; Zsolt Csabai; Zsolt Balázs; Shinichi Takahashi; Miklós Palkovits; Michael Snyder; Zsolt Boldogkői
We carried out whole-exome ultra-high throughput sequencing in brain samples of suicide victims who had suffered from major depressive disorder and control subjects who had died from other causes. This study aimed to reveal the selective accumulation of rare variants in the coding and the UTR sequences within the genes of suicide victims. We also analysed the potential effect of STR and CNV variations, as well as the infection of the brain with neurovirulent viruses in this behavioural disorder. As a result, we have identified several candidate genes, among others three calcium channel genes that may potentially contribute to completed suicide. We also explored the potential implication of the TGF-β signalling pathway in the pathogenesis of suicidal behaviour. To our best knowledge, this is the first study that uses whole-exome sequencing for the investigation of suicide.
Frontiers in Genetics | 2018
Dóra Tombácz; Zsolt Balázs; Zsolt Csabai; Michael Snyder; Zsolt Boldogkői
Long-read sequencing (LRS) techniques are very recent advancements, but they have already been used for transcriptome research in all of the three subfamilies of herpesviruses. These techniques have multiplied the number of known transcripts in each of the examined viruses. Meanwhile, they have revealed a so far hidden complexity of the herpesvirus transcriptome with the discovery of a large number of novel RNA molecules, including coding and non-coding RNAs, as well as transcript isoforms, and polycistronic RNAs. Additionally, LRS techniques have uncovered an intricate meshwork of transcriptional overlaps between adjacent and distally located genes. Here, we review the contribution of LRS to herpesvirus transcriptomics and present the complexity revealed by this technology, while also discussing the functional significance of this phenomenon.