Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noriatsu Shigemura is active.

Publication


Featured researches published by Noriatsu Shigemura.


Nature | 2005

Heat activation of TRPM5 underlies thermal sensitivity of sweet taste

Karel Talavera; Keiko Yasumatsu; Thomas Voets; Guy Droogmans; Noriatsu Shigemura; Yuzo Ninomiya; Robert F. Margolskee; Bernd Nilius

TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes. Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells. Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 °C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels. Moreover, we show that increasing temperature between 15 and 35 °C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans, including enhanced sweetness perception at high temperatures and ‘thermal taste’, the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants.


The Journal of Neuroscience | 2010

Taste Preference for Fatty Acids Is Mediated by GPR40 and GPR120

Cristina Cartoni; Keiko Yasumatsu; Tadahiro Ohkuri; Noriatsu Shigemura; Ryusuke Yoshida; Nicolas Godinot; Johannes le Coutre; Yuzo Ninomiya; Sami Damak

The oral perception of fat has traditionally been considered to rely mainly on texture and olfaction, but recent findings suggest that taste may also play a role in the detection of long chain fatty acids. The two G-protein coupled receptors GPR40 (Ffar1) and GPR120 are activated by medium and long chain fatty acids. Here we show that GPR120 and GPR40 are expressed in the taste buds, mainly in type II and type I cells, respectively. Compared with wild-type mice, male and female GPR120 knock-out and GPR40 knock-out mice show a diminished preference for linoleic acid and oleic acid, and diminished taste nerve responses to several fatty acids. These results show that GPR40 and GPR120 mediate the taste of fatty acids.


PLOS ONE | 2009

Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

Yuko Nakagawa; Masahiro Nagasawa; Satoko Yamada; Akemi Hara; Hideo Mogami; Viacheslav O. Nikolaev; Martin J. Lohse; Noriatsu Shigemura; Yuzo Ninomiya; Itaru Kojima

Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Endocannabinoids selectively enhance sweet taste

Ryusuke Yoshida; Tadahiro Ohkuri; Masafumi Jyotaki; Toshiaki Yasuo; Nao Horio; Keiko Yasumatsu; Keisuke Sanematsu; Noriatsu Shigemura; Tsuneyuki Yamamoto; Robert F. Margolskee; Yuzo Ninomiya

Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB1 receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB1 receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB1 receptor antagonist, but not by AM630, a CB2 receptor antagonist. Immunohistochemistry shows that CB1 receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.


Diabetes | 2008

Diurnal Variation of Human Sweet Taste Recognition Thresholds Is Correlated With Plasma Leptin Levels

Yuki Nakamura; Keisuke Sanematsu; Rie Ohta; Shinya Shirosaki; Kiyoshi Koyano; Kazuaki Nonaka; Noriatsu Shigemura; Yuzo Ninomiya

OBJECTIVE—It has recently been proposed that the peripheral taste organ is one of the targets for leptin. In lean mice, leptin selectively suppresses gustatory neural and behavioral responses to sweet compounds without affecting responses to other taste stimuli, whereas obese diabetic db/db mice with defects in leptin receptor lack this leptin suppression on sweet taste. Here, we further examined potential links between leptin and sweet taste in humans. RESEARCH DESIGN AND METHODS—A total of 91 nonobese subjects were used to determine recognition thresholds using a standard stair-case methodology for various taste stimuli. Plasma leptin levels were determined by an enzyme-linked immunosorbent assay at several timepoints during the day under normal and restricted-meal conditions. RESULTS—The recognition thresholds for sweet compounds exhibited a diurnal variation from 0800 to 2200 h that parallels variation for leptin levels, with the lowest thresholds in the morning and the highest thresholds at night. This diurnal variation is sweet-taste selective—it was not observed in thresholds for other taste stimuli (NaCl, citric acid, quinine, and mono-sodium glutamate). The diurnal variation for sweet thresholds in the normal feeding condition (three meals) was independent of meal timing and thereby blood glucose levels. Furthermore, when leptin levels were phase-shifted following imposition of one or two meals per day, the diurnal variation of thresholds for sweet taste shifted in parallel. CONCLUSIONS—This synchronization of diurnal variation in leptin levels and sweet taste recognition thresholds suggests a mechanistic connection between these two variables in humans.


The Journal of Physiology | 2009

Discrimination of taste qualities among mouse fungiform taste bud cells

Ryusuke Yoshida; Aya Miyauchi; Toshiaki Yasuo; Masafumi Jyotaki; Yoshihiro Murata; Keiko Yasumatsu; Noriatsu Shigemura; Yuchio Yanagawa; Kunihiko Obata; Hiroshi Ueno; Robert F. Margolskee; Yuzo Ninomiya

Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin‐expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter‐best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour‐best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl‐best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.


PLOS ONE | 2009

Genetic and Molecular Basis of Individual Differences in Human Umami Taste Perception

Noriatsu Shigemura; Shinya Shirosaki; Keisuke Sanematsu; Ryusuke Yoshida; Yuzo Ninomiya

Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose - response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.


Histochemical Journal | 1999

The distribution of BrdU- and TUNEL-positive cells during odontogenesis in mouse lower first molars

Noriatsu Shigemura; Tamotsu Kiyoshima; Ieyoshi Kobayashi; Kou Matsuo; Haruyoshi Yamaza; Akifumi Akamine; Hidetaka Sakai

This study investigated the minute distribution of both proliferating and non-proliferating cells, and cell death in the developing mouse lower first molars using 5-bromo-2′-deoxyuridine (BrdU) incorporation and the terminal deoxynucleotidyl transferase-mediated deoxyuridine-5′-triphosphate (dUTP)-biotin nick end labeling (TUNEL) double-staining technique. The distribution pattern of the TUNEL-positive cells was more notable than that of the BrdU-positive cells. TUNEL-positive cells were localized in the following six sites: (1) in the most superficial layer of the dental epithelium during the initiation stage, (2) in the dental lamina throughout the period during which tooth germs grow after bud formation, (3) in the dental epithelium in the most anterior part of the antero-posterior axis of the tooth germ after bud formation, (4) in the primary enamel knot from the late bud stage to the late cap stage, (5) in the secondary enamel knots from the late cap stage to the late bell stage, and (6) in the stellate reticulum around the tips of the prospective cusps after the early bell stage. These peculiar distributions of TUNEL-positive cells seemed to have some effect on either the determination of the exact position of the tooth germ in the mandible or on the complicated morphogenesis of the cusps. The distribution of BrdU-negative cells was closely associated with TUNEL-positive cells, which thus suggested cell arrest and the cell death to be essential for the tooth morphogenesis.


Vitamins and Hormones Series | 2002

Leptin and sweet taste.

Yuzo Ninomiya; Noriatsu Shigemura; Keiko Yasumatsu; Rie Ohta; Kumiko Sugimoto; Kiyohito Nakashima; Bernd Lindemann

Leptin, the product of the obese (ob) gene, is a hormone primarily produced in adipose cells, and also at smaller amounts in some other peripheral organs. It regulates food intake, energy expenditure, and body weight. Leptin is thought to promote weight loss, at least in rodents, by suppressing appetite and stimulating metabolism. Mutant mice that lack either leptin or functional leptin receptors, such as ob/ob and db/db mice, are hyperphagic, massively obese, and diabetic. Central hypothalamic targets are mainly responsible for the effects of leptin on food intake and weight loss. However, there are also direct effects on peripheral tissues. Recently, the taste organ was found to be one of the peripheral targets for leptin. The hormone specifically inhibits sweet taste responses in lean mice and not in db/db mice. Thus leptin appears to act as a modulator of sweet taste, provided a functional leptin receptor is expressed by the taste cells. This chapter reviews the genetics and molecular biology of leptin and its receptors, the receptor mechanisms for sweet taste, the modulating action of leptin on taste receptor cells, and the consequences for the regulation of food intake.


Seminars in Cell & Developmental Biology | 2013

Modulation of sweet responses of taste receptor cells

Ryusuke Yoshida; Mayu Niki; Masafumi Jyotaki; Keisuke Sanematsu; Noriatsu Shigemura; Yuzo Ninomiya

Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis.

Collaboration


Dive into the Noriatsu Shigemura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge