Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadahiro Ohkuri is active.

Publication


Featured researches published by Tadahiro Ohkuri.


The Journal of Neuroscience | 2010

Taste Preference for Fatty Acids Is Mediated by GPR40 and GPR120

Cristina Cartoni; Keiko Yasumatsu; Tadahiro Ohkuri; Noriatsu Shigemura; Ryusuke Yoshida; Nicolas Godinot; Johannes le Coutre; Yuzo Ninomiya; Sami Damak

The oral perception of fat has traditionally been considered to rely mainly on texture and olfaction, but recent findings suggest that taste may also play a role in the detection of long chain fatty acids. The two G-protein coupled receptors GPR40 (Ffar1) and GPR120 are activated by medium and long chain fatty acids. Here we show that GPR120 and GPR40 are expressed in the taste buds, mainly in type II and type I cells, respectively. Compared with wild-type mice, male and female GPR120 knock-out and GPR40 knock-out mice show a diminished preference for linoleic acid and oleic acid, and diminished taste nerve responses to several fatty acids. These results show that GPR40 and GPR120 mediate the taste of fatty acids.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Endocannabinoids selectively enhance sweet taste

Ryusuke Yoshida; Tadahiro Ohkuri; Masafumi Jyotaki; Toshiaki Yasuo; Nao Horio; Keiko Yasumatsu; Keisuke Sanematsu; Noriatsu Shigemura; Tsuneyuki Yamamoto; Robert F. Margolskee; Yuzo Ninomiya

Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB1 receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB1 receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB1 receptor antagonist, but not by AM630, a CB2 receptor antagonist. Immunohistochemistry shows that CB1 receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.


The American Journal of Clinical Nutrition | 2009

Multiple receptors underlie glutamate taste responses in mice

Keiko Yasumatsu; Nao Horio; Yoshihiro Murata; Shinya Shirosaki; Tadahiro Ohkuri; Ryusuke Yoshida; Yuzo Ninomiya

l-Glutamate is known to elicit a unique taste, umami, that is distinct from the tastes of sweet, salty, sour, and bitter. Recent molecular studies have identified several candidate receptors for umami in taste cells, such as the heterodimer T1R1/T1R3 and brain-expressed and taste-expressed type 1 and 4 metabotropic glutamate receptors (brain-mGluR1, brain-mGluR4, taste-mGluR1, and taste-mGluR4). However, the relative contributions of these receptors to umami taste reception remain to be elucidated. We critically discuss data from recent studies in which mouse taste cell, nerve fiber, and behavioral responses to umami stimuli were measured to evaluate whether receptors other than T1R1/T1R3 are involved in umami responses. We particularly emphasized studies of umami responses in T1R3 knockout (KO) mice and studies of potential effects of mGluR antagonists on taste responses. The results of these studies indicate the existence of substantial residual responses to umami compounds in the T1R3-KO model and a significant reduction of umami responsiveness after administration of mGluR antagonists. These findings thus provide evidence of the involvement of mGluRs in addition to T1R1/T1R3 in umami detection in mice and suggest that umami responses, at least in mice, may be mediated by multiple receptors.


The Journal of Physiology | 2013

Taste responses in mice lacking taste receptor subunit T1R1

Yoko Kusuhara; Ryusuke Yoshida; Tadahiro Ohkuri; Keiko Yasumatsu; Anja Voigt; Sandra Hübner; Katsumasa Maeda; Ulrich Boehm; Wolfgang Meyerhof; Yuzo Ninomiya

•  The taste receptor heterodimer T1R1 + T1R3, metabotropic glutamate receptors (mGluRs) and/or their variants may function as umami taste receptors. •  Here, we used newly developed T1R1−/− mice and examined the role of T1R1 and mGluRs in taste detection. •  The T1R1−/− mice exhibited seriously diminished synergistic responses to glutamate and inosine monophosphate but not to glutamate alone and significantly smaller responses to sweeteners. •  Addition of mGluR antagonists significantly inhibited responses to glutamate in both T1R1−/− and heterozygous T1R1+/− mice. •  Taken together, these results suggest that T1R1 mainly contributes to umami taste synergism and partly to sweet sensitivity, while mGluRs are involved in the detection of umami compounds.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity

Tadahiro Ohkuri; Keiko Yasumatsu; Nao Horio; Masafumi Jyotaki; Robert F. Margolskee; Yuzo Ninomiya

Sweet taste transduction involves taste receptor type 1, member 2 (T1R2), taste receptor type 1, member 3 (T1R3), gustducin, and TRPM5. Because knockout (KO) mice lacking T1R3, gustducins Galpha subunit (Galphagust), or TRPM5 exhibited greatly reduced, but not abolished responses of the chorda tympani (CT) nerve to sweet compounds, it is likely that multiple sweet transduction pathways exist. That gurmarin (Gur), a sweet taste inhibitor, inhibits some but not all mouse CT responses to sweet compounds supports the existence of multiple sweet pathways. Here, we investigated Gur inhibition of CT responses to sweet compounds as a function of temperature in KO mice lacking T1R3, Galphagust, or TRPM5. In T1R3-KO mice, responses to sucrose and glucose were Gur sensitive (GS) and displayed a temperature-dependent increase (TDI). In Galphagust-KO mice, responses to sucrose and glucose were Gur-insensitive (GI) and showed a TDI. In TRPM5-KO mice, responses to glucose were GS and showed a TDI. All three KO mice exhibited no detectable responses to SC45647, and their responses to saccharin displayed neither GS nor a TDI. For all three KO mice, the lingual application of pronase, another sweet response inhibitor, almost fully abolished responses to sucrose and glucose but did not affect responses to saccharin. These results provide evidence for 1) the existence of multiple transduction pathways underlying responses to sugars: a T1R3-independent GS pathway for sucrose and glucose, and a TRPM5-independent temperature sensitive GS pathway for glucose; 2) the requirement for Galphagust in GS sweet taste responses; and 3) the existence of a sweet independent pathway for saccharin, in mouse taste cells on the anterior tongue.


The Journal of Neuroscience | 2013

Angiotensin II Modulates Salty and Sweet Taste Sensitivities

Noriatsu Shigemura; Shusuke Iwata; Keiko Yasumatsu; Tadahiro Ohkuri; Nao Horio; Keisuke Sanematsu; Ryusuke Yoshida; Robert F. Margolskee; Yuzo Ninomiya

Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.


Neuroscience | 2010

The role of transient receptor potential vanilloid-1 on neural responses to acids by the chorda tympani, glossopharyngeal and superior laryngeal nerves in mice

T. Arai; Tadahiro Ohkuri; Keiko Yasumatsu; T. Kaga; Yuzo Ninomiya

The transient receptor potential vanilloid-1 (TRPV1) receptor acts as a polymodal nociceptor activated by capsaicin, heat, and acid. TRPV1, which is expressed in sensory neurons innervating the oral cavity, is associated with an oral burning sensation in response to spicy food containing capsaicin. However, little is known about the involvement of TRPV1 in responses to acid stimuli in either the gustatory system or the general somatosensory innervation of the oropharynx. To test this possibility, we recorded electrophysiological responses to several acids (acetic acid, citric acid and HCl) and other taste stimuli from the mouse chorda tympani, glossopharyngeal and superior laryngeal nerves, and compared potential effects of iodo-resiniferatoxin (I-RTX), a potent TRPV1 antagonist, on chemical responses of the three nerves. The results indicated that in the chorda tympani nerve, I-RTX (1-100 nM) did not affect responses to acids, sucrose and quinine HCl, but reduced responses to NaCl (I-RTX at concentrations of 10 and 100 nM) and KCl and NH(4)Cl (100 nM). In contrast, in the glossopharyngeal nerve, I-RTX significantly suppressed responses to all acids and salts, but not to sucrose and quinine HCl. Responses to acetic acid were suppressed by I-RTX even at 0.1 nM concentration. The superior laryngeal nerve responded in a concentration-dependent manner to acetic acid, citric acid, HCl, KCl, NH(4)Cl and monosodium l-glutamate. The responses to acetic acid, but not to the other stimuli, were significantly inhibited by I-RTX. These results suggested that TRPV1 may be involved in the mechanism for responses to acids presented to the posterior oral cavity and larynx. This high degree of responsiveness to acetic acid may account for the oral burning sensation, known as a flavor characteristic of vinegar.


Chemical Senses | 2012

Residual Chemoresponsiveness to Acids in the Superior Laryngeal Nerve in ''Taste-Blind'' (P2X2/P2X3 Double-KO) Mice

Tadahiro Ohkuri; Nao Horio; Jennifer M. Stratford; Thomas E. Finger; Yuzo Ninomiya

Mice lacking both the P2X2 and the P2X3 purinergic receptors (P2X-dblKO) exhibit loss of responses to all taste qualities in the taste nerves innervating the tongue. Similarly, these mice exhibit a near total loss of taste-related behaviors in brief access tests except for a near-normal avoidance of acidic stimuli. This persistent avoidance of acids despite the loss of gustatory neural responses to sour was postulated to be due to continued responsiveness of the superior laryngeal (SL) nerve. However, chemoresponses of the larynx are attributable both to taste buds and to free nerve endings. In order to test whether the SL nerve of P2X-dblKO mice remains responsive to acids but not to other tastants, we recorded responses from the SL nerve in wild-type (WT) and P2X-dblKO mice. WT mice showed substantial SL responses to monosodium glutamate, sucrose, urea, and denatonium-all of which were essentially absent in P2X-dblKO animals. In contrast, the SL nerve of P2X-dblKO mice exhibited near-normal responses to citric acid (50 mM) although responsiveness of both the chorda tympani and the glossopharyngeal nerves to this stimulus were absent or greatly reduced. These results are consistent with the hypothesis that the residual avoidance of acidic solutions by P2X-dblKO mice may be attributable to the direct chemosensitivity of nerve fibers innervating the laryngeal epithelium and not to taste.


Annals of the New York Academy of Sciences | 2009

Modulation and Transmission of Sweet Taste Information for Energy Homeostasis

Keisuke Sanematsu; Nao Horio; Yoshihiro Murata; Ryusuke Yoshida; Tadahiro Ohkuri; Noriatsu Shigemura; Yuzo Ninomiya

Perception of sweet taste is important for animals to detect external energy source of calories. In mice, sweet‐sensitive cells possess a leptin receptor. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. Data from our recent studies indicate that leptin may also modulate sweet taste sensation in humans with a diurnal variation in sweet sensitivity. This leptin modulation of sweet taste information to the brain may influence individuals’ preference and ingestive behavior, thereby playing important roles in regulation of energy homeostasis.


BMC Neuroscience | 2009

Genetically-increased taste cell population with Gα-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice

Keiko Yasumatsu; Tadahiro Ohkuri; Keisuke Sanematsu; Noriatsu Shigemura; Hideo Katsukawa; Noritaka Sako; Yuzo Ninomiya

BackgroundThe peptide gurmarin is a selective sweet response inhibitor for rodents. In mice, gurmarin sensitivity differs among strains with gurmarin-sensitive C57BL and gurmarin-poorly-sensitive BALB strains. In C57BL mice, sweet-responsive fibers of the chorda tympani (CT) nerve can be divided into two distinct populations, gurmarin-sensitive (GS) and gurmarin-insensitive (GI) types, suggesting the existence of two distinct reception pathways for sweet taste responses. By using the dpa congenic strain (dpa CG) whose genetic background is identical to BALB except that the gene(s) controlling gurmarin sensitivity are derived from C57BL, we previously found that genetically-elevated gurmarin sensitivity in dpa CG mice, confirmed by using behavioral response and whole CT nerve response analyses, was linked to a greater taste cell population co-expressing sweet taste receptors and a Gα protein, Gα-gustducin. However, the formation of neural pathways from the increased taste cell population to nerve fibers has not yet been examined.ResultsHere, we investigated whether the increased taste cell population with Gα-gustducin-coupled sweet receptors would be associated with selective increment of GS fiber population or nonselective shift of gurmarin sensitivities of overall sweet-responsive fibers by examining the classification of GS and GI fiber types in dpa CG and BALB mice. The results indicated that dpa CG, like C57BL, possess two distinct populations of GS and GI types of sweet-responsive fibers with almost identical sizes (dpa CG: 13 GS and 16 GI fibers; C57BL: 16 GS and 14 GI fibers). In contrast, BALB has only 3 GS fibers but 18 GI fibers. These data indicate a marked increase of the GS population in dpa CG.ConclusionThese results suggest that the increased cell population expressing T1r2/T1r3/Gα-gustducin in dpa CG mice may be associated with an increase of their matched GS type fibers, and may form the distinct GS sweet reception pathway in mice. Gα-gustducin may be involved in the GS sweet reception pathway and may be a key molecule for links between sweet taste receptors and cell type-specific-innervation by their matched fiber class.

Collaboration


Dive into the Tadahiro Ohkuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Margolskee

Monell Chemical Senses Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge