Norie Yoshikawa
University of Miyazaki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norie Yoshikawa.
Neuropharmacology | 2007
Toshihiko Yanagita; Toyoaki Maruta; Yasuhito Uezono; Shinya Satoh; Norie Yoshikawa; Takayuki Nemoto; Hideyuki Kobayashi; Akihiko Wada
Lithium has been proven to be effective in the therapy of bipolar disorder, but its mechanism of pharmacological action is not clearly defined. We examined the effects of lithium on voltage-dependent Na(+) channels, nicotinic acetylcholine receptors, and voltage-dependent Ca(2+) channels, as well as catecholamine secretion in cultured bovine adrenal chromaffin cells. Lithium chloride (LiCl) reduced veratridine-induced (22)Na(+) influx in a concentration-dependent manner, even in the presence of ouabain, an inhibitor of Na(+), K(+)-ATPase. Glycogen synthase kinase-3 (GSK-3) inhibitors (SB216763, SB415286 or the GSK-3 inhibitor IX) did not affect veratridine-induced (22)Na(+) influx, as well as inhibitory effect of LiCl on veratridine-induced (22)Na(+) influx. Enhancement of veratridine (site 2 toxin)-induced (22)Na(+) influx caused by alpha-scorpion venom (site 3 toxin), beta-scorpion venom (site 4 toxin), or Ptychodiscus brevis toxin-3 (site 5 toxin), still occurred in the presence of LiCl in the same manner as in the control cells. LiCl also reduced veratridine-induced (45)Ca(2+) influx and catecholamine secretion. In contrast, LiCl (< or = 30 mM) had no effect on nicotine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion, as well as on high K(+)-induced (45)Ca(2+) influx and catecholamine secretion. Chronic treatment with LiCl at 100mM (but not at < or = 30 mM) significantly reduced cell viability in a time-dependent manner. These results suggest that lithium selectively inhibits Na(+) influx thorough Na(+) channels and subsequent Ca(2+) influx and catecholamine secretion, independent of GSK-3 inhibition.
European Journal of Pharmacology | 2008
Takayuki Nemoto; Tasuku Kanai; Toshihiko Yanagita; Shinya Satoh; Toyoaki Maruta; Norie Yoshikawa; Hideyuki Kobayashi; Akihiko Wada
In cultured bovine adrenal chromaffin cells, where Akt1 is the predominant isoform over Akt2 and Akt3, chronic (> or =12 h) treatment with 1-20 mM LiCl, an inhibitor of glycogen synthase kinase-3, decreased Akt1 level by approximately 52% (EC50=3.7 mM; t1/2=l2 h); it was associated with LiCl-induced increased levels of Ser9-phosphorylated glycogen synthase kinase-3beta (approximately 37%) and beta-catenin (approximately 59%), two hallmarks of glycogen synthase kinase-3beta inhibition. The same LiCl treatment did not change phosphoinositide 3-kinase, phosphoinositide-dependent kinase 1, and extracellular signal-regulated kinase-1/2 levels. Treatment with SB216763 [3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], a selective inhibitor of glycogen synthase kinase-3, lowered Akt1 level by approximately 67% (EC50=2 microM; t1/2=l2 h), when SB216763 caused concentration- and time-dependent increase of beta-catenin level by approximately 76%. LiCl- or SB216763-induced Akt1 decrease, as well as increases of Ser9-phosphorylated glycogen synthase kinase-3beta and beta-catenin were restored to the control levels of nontreated cells after the washout of LiCl (20 mM for 24 h)- or SB216763 (30 microM for 24 h)-treated cells. LiCl-induced Akt1 reduction was not prevented by beta-lactone, lactacystin (two inhibitors of proteasome), calpastatin (an inhibitor of calpain), or leupeptin (an inhibitor of lysosome). LiCl decreased Akt1 mRNA level by 20% at 6 h, with no effect on Akt1 mRNA stability. These results suggest that glycogen synthase kinase-3beta inhibition caused down-regulation of Akt1 mRNA and Akt1 protein levels; conversely, constitutive activity of glycogen synthase kinase-3beta maintains steady-state level of Akt1 in quiescent adrenal chromaffin cells.
Neuropharmacology | 2009
Toshihiko Yanagita; Toyoaki Maruta; Takayuki Nemoto; Yasuhito Uezono; Kiyotaka Matsuo; Shinya Satoh; Norie Yoshikawa; Tasuku Kanai; Hideyuki Kobayashi; Akihiko Wada
In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, we have previously reported that lithium chloride (LiCl) inhibits function of Na(+) channels independent of glycogen synthase kinase-3 (GSK-3) (Yanagita et al., 2007). Here, we further examined the effects of chronic lithium treatment on Na(+) channels. LiCl treatment (1-30 mM, > or = 12 h) increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 32% without altering the affinity of [(3)H]STX binding. This increase was prevented by cycloheximide and actinomycin D. SB216763 and SB415286 (GSK-3 inhibitors) also increased cell surface [(3)H]STX binding by approximately 31%. Simultaneous treatment with LiCl and SB216763 or SB415286 did not produce an increased effect on [(3)H]STX binding compared with either treatment alone. LiCl increased Na(+) channel alpha-subunit mRNA level by 32% at 24 h. LiCl accelerated alpha-subunit gene transcription by 35% without altering alpha-subunit mRNA stability. In LiCl-treated cells, LiCl inhibited veratridine-induced (22)Na(+) influx as in untreated cells. However, washout of LiCl after chronic treatment enhanced veratridine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion by approximately 30%. Washout of LiCl after 24 h treatment shifted concentration-response curve of veratridine upon (22)Na(+) influx upward, without altering its EC(50) value. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced (22)Na(+) influx by two-fold in untreated and LiCl-treated cells. Whole-cell patch-clamp analysis indicated that I-V curve and steady-state inactivation/activation curves were comparable between untreated and LiCl-treated cells. Thus, GSK-3 inhibition by LiCl up-regulated cell surface Na(V)1.7 via acceleration of alpha-subunit gene transcription, enhancing veratridine-induced Na(+) influx, Ca(2+) influx and catecholamine secretion.
Brain Research | 2006
Takayuki Nemoto; Hiroki Yokoo; Shinya Satoh; Toshihiko Yanagita; Takashi Sugano; Norie Yoshikawa; Toyoaki Maruta; Hideyuki Kobayashi; Akihiko Wada
In cultured bovine adrenal chromaffin cells, 12-h treatment with 1-20 mM LiCl, an inhibitor of glycogen synthase kinase-3 (GSK-3), increased Ser(9) phosphorylation of GSK-3beta by approximately 44%, while decreasing insulin receptor substrate-1 (IRS-1) and IRS-2 protein levels by approximately 38 and approximately 62% in a concentration-dependent manner. Treatment with SB216763 (0.1-30 microM for 12 h), a selective inhibitor of GSK-3, lowered IRS-1 and IRS-2 levels by approximately 38 and approximately 48%, while increasing beta-catenin protein level by approximately 47%, due to the prevention of GSK-3-induced degradation of beta-catenin by SB216763. Insulin (100 nM for 24 h) increased Ser(9) phosphorylation of GSK-3beta by approximately 104%, while decreasing IRS-1 and IRS-2 levels by approximately 41 and approximately 72%; the insulin-induced Ser(9) phosphorylation of GSK-3beta, as well as down-regulations of IRS-1 and IRS-2 levels were restored to the control levels of nontreated cells at 24 h after the washout of the insulin (100 nM for 12 h)-treated cells. Either clasto-lactacystin beta-lactone or lactacystin (an inhibitor of proteasome) prevented LiCl- or SB216763-induced decreases of IRS-1 and IRS-2 levels by approximately 100 and approximately 69%, respectively. In contrast, calpastatin (an inhibitor of calpain) and leupeptin (an inhibitor of lysosome) failed to prevent the decreases of IRS-1 and IRS-2 levels caused by LiCl or SB216763. LiCl or SB216763 lowered IRS-2 mRNA level, with no effect on IRS-1 mRNA level. These results suggest that constitutive activity of GSK-3beta in quiescent cells positively maintains steady-state levels of IRS-1 and IRS-2 via regulating proteasomal degradation and/or synthesis of IRS-1 and IRS-2 proteins.
Neuropharmacology | 2010
Takayuki Nemoto; Shinya Satoh; Toyoaki Maruta; Tasuku Kanai; Norie Yoshikawa; Satoshi Miyazaki; Toshihiko Yanagita; Akihiko Wada
In cultured bovine adrenal chromaffin cells, approximately 24 h-treatment with insulin-like growth factor-I (IGF-I) decreased cell surface (125)I-IGF-I binding capacity and IGF-I receptor protein level by approximately 64% (EC(50) = 5.0 nM; t(1/2) = approximately 7 h). IGF-I-induced IGF-I receptor decrease was abolished by LY294002 (phosphoinositide 3-kinase inhibitor) and partially attenuated by rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]). SB216763 (an inhibitor of glycogen synthase kinase-3 [GSK-3]) down-regulated IGF-I receptor, which was further decreased by IGF-I. IGF-I increased inhibitory Ser(9)-phosphorylation of GSK-3beta and stimulatory Ser(2448)-phosphorylation of mTOR. l-leucine increased phosphorylation of mTOR (but not GSK-3beta), and down-regulated IGF-I receptor, both events being abolished by rapamycin. IGF-I-induced IGF-I receptor decrease was not prevented by proteolysis inhibitors. Pulse-label with [(35)S]methionine/cysteine followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that SB216763 or L-leucine retarded synthesis of IGF-I receptor and its precursor molecule. SB216763 (but not l-leucine) destabilized IGF-I receptor mRNA and decreased its level, without changing IGF-I receptor gene transcription. In SB216763-treated cells, IGF-I-induced Tyr-autophosphorylation of IGF-I receptor was decreased by 36%, compared to nontreated cells. IGF-I attenuated constitutive Ser(396)-phosphorylation of tau by 30% in nontreated cells, but not in SB216763-treated cells. IGF-I-induced down-regulations of (125)I-IGF-I binding and IGF-I receptor, as well as IGF-I-induced phosphorylations of GSK-3beta and mTOR were restored to the control levels of nontreated cells after washout of IGF-I (10 nM for 12 h)-treated cells. Thus, IGF-I down-regulated functional IGF-I receptor via GSK-3beta inhibition and mTOR activation; constitutive activity of GSK-3beta maintained IGF-I receptor level in nonstimulated cells.
Neurochemistry International | 2009
Tasuku Kanai; Takayuki Nemoto; Toshihiko Yanagita; Toyoaki Maruta; Shinya Satoh; Norie Yoshikawa; Akihiko Wada
In cultured bovine adrenal chromaffin cells expressing Na(v)1.7 sodium channel isoform, veratridine increased Ser(473)-phosphorylation of Akt and Ser(9)-phosphorylation of glycogen synthase kinase-3beta by approximately 217 and approximately 195%, while decreasing Ser(396)-phosphorylation of tau by approximately 36% in a concentration (EC(50)=2.1 microM)- and time (t(1/2)=2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca(2+) removal. Veratridine (10 microM for 5 min) increased translocation of Ca(2+)-dependent conventional protein kinase C-alpha from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca(2+) removal, or Gö6976 (an inhibitor of protein kinase C-alpha), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3beta phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 microM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na(+) influx via Na(v)1.7 sodium channel and the subsequent Ca(2+) influx via voltage-dependent calcium channel activated (1) Ca(2+)/protein kinase C-alpha pathway, as well as (2) Ca(2+)/phosphatidylinositol 3-kinase/Akt and (3) Ca(2+)/phosphatidylinositol 3-kinase/protein kinase C-alpha pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3beta, decreasing tau phosphorylation.
Neuropharmacology | 2008
Shinya Satoh; Toshihiko Yanagita; Toyoaki Maruta; Takayuki Nemoto; Norie Yoshikawa; Hideyuki Kobayashi; Tetsuya Tono; Akihiko Wada
The ability of calcineurin to regulate IRS-1 and IRS-2 levels has not been examined in any given cells, although calcineurin inhibition by therapeutic immunosuppressants produced cytoprotective and cytotoxic effects (e.g., new-onset of diabetes mellitus, seizure). Chronic (>or=3h) treatment of cultured bovine adrenal chromaffin cells with cyclosporin A or FK506 decreased IRS-2 protein level by approximately 50% (IC(50)=200 or 10nM), without changing IRS-2 mRNA level, and insulin receptor, insulin-like growth factor-I (IGF-I) receptor, IRS-1, PI3K/PDK-1/Akt/GSK-3beta and ERK1/ERK2 protein levels. When the cells were washed to remove the test drug, the decreased IRS-2 level restored to the control level. Cyclosporin A or FK506 treatment inhibited calcineurin activity (IC(50)=500 or 40 nM, in vitro assay). Rapamycin, an FK506-binding protein ligand unable to inhibit calcineurin, failed to decrease IRS-2, but reversed FK506-induced decreases of calcineurin activity and IRS-2 level. Pulse-label followed by polyacrylamide gel electrophoresis revealed that cyclosporin A or FK506 accelerated IRS-2 degradation rate (t(1/2)) from >24 to approximately 4.2h, without altering IRS-2 synthesis. IRS-2 reduction by cyclosporin A or FK506 was prevented by lactacystin (proteasome inhibitor), but not by calpeptin (calpain inhibitor) or leupeptin (lysosome inhibitor). Cyclosporin A or FK506 increased serine-phosphorylation and ubiquitination of IRS-2. Cell surface (125)I-IGF-I binding capacity was not changed in cyclosporin A- or FK506-treated cells; however, IGF-I-induced phosphorylations of GSK-3beta and ERK1/ERK2 were attenuated by approximately 50%, which were prevented by rapamycin or lactacystin. Thus, calcineurin inhibition decreased IRS-2 level via proteasomal IRS-2 degradation, attenuating IGF-I-induced GSK-3beta and ERK pathways.
Journal of Neurochemistry | 2008
Toyoaki Maruta; Toshihiko Yanagita; Kiyotaka Matsuo; Yasuhito Uezono; Shinya Satoh; Takayuki Nemoto; Norie Yoshikawa; Hideyuki Kobayashi; Mayumi Takasaki; Akihiko Wada
In cultured bovine adrenal chromaffin cells, chronic (≥ 24 h) treatment with lysophosphatidic acid (LPA) augmented veratridine‐induced 22Na+ influx via Nav1.7 by ∼22% (EC50 = 1 nmol/L), without changing nicotine‐induced 22Na+ influx via nicotinic receptor‐associated channel. LPA enhanced veratridine (but not nicotine)‐induced 45Ca2+ influx via voltage‐dependent calcium channel and catecholamine secretion. LPA shifted concentration–response curve of veratridine for 22Na+ influx upward, without altering the EC50 of veratridine. Ptychodiscus brevis toxin‐3 allosterically enhanced veratridine‐induced 22Na+ influx by twofold in non‐treated and LPA‐treated cells. Whole‐cell patch‐clamp analysis showed that peak Na+ current amplitude was greater by 39% in LPA (100 nmol/L for 36 h)‐treated cells; however, I–V curve and steady‐state inactivation/activation curves were comparable between non‐treated and LPA‐treated cells. LPA treatment (≥ 24 h) increased cell surface [3H]saxitoxin binding by ∼28%, without altering the Kd value; the increase was prevented by cycloheximide, actinomycin D, or Ki16425, dioctylglycerol pyrophosphate 8:0 (two inhibitors of LPA1 and LPA3 receptors), or botulinum toxin C3 (Rho inhibitor), Y27632 (Rho kinase inhibitor), consistent with LPA1 receptor expression in adrenal chromaffin cells. LPA raised Nav1.7 mRNA level by ∼37%. Thus, LPA–LPA1 receptor–Rho/Rho kinase pathway up‐regulated cell surface Nav1.7 and Nav1.7 mRNA levels, enhancing veratridine‐induced Ca2+ influx and catecholamine secretion.
Journal of Neurochemistry | 2007
Hiroki Yokoo; Takayuki Nemoto; Toshihiko Yanagita; Shinya Satoh; Norie Yoshikawa; Toyoaki Maruta; Akihiko Wada
In cultured bovine adrenal chromaffin cells, 48 h‐treatment with 20 mmol/L LiCl, 1 mmol/L valproic acid, 30 μmol/L SB216763, 30 μmol/L SB415286, or 100 nmol/L insulin, a condition that inhibits constitutive active glycogen synthase kinase‐3 (GSK‐3), decreased cell surface 125I‐insulin binding capacity by ∼39%, without altering the Kd value; LiCl, SB216763 or insulin decreased insulin receptor (IR) and IR precursor levels, attenuating insulin‐induced Tyr‐autophosphorylation of IR. LiCl increased inhibitory Ser9‐phosphorylation of GSK‐3β at 6 h, decreasing 125I‐insulin binding at 24 h. SB216763‐induced 125I‐insulin binding reduction (IC50 = 3 μmol/L) was preceded by β‐catenin level increase by SB216763 (EC50 = 11 μmol/L), a hallmark of GSK‐3 inhibition. Insulin‐induced rapid (> 1 min) Ser9‐phosphorylation of GSK‐3β ( Nemoto et al. 2006 ) was followed by ∼48% decrease of IR level. LiCl did not stimulate endocytosis, nor proteolysis of IR. LiCl destabilized IR mRNA (t1/2 = 9.3 vs. 6.5 h), decreasing IR mRNA level by ∼47%, without altering IR gene transcription. Decreases of 125I‐insulin binding and IR level, as well as increased Ser9‐phosphorylation of GSK‐3β were restored to the control levels by washing the test compound‐treated cells. Thus, GSK‐3β regulates IR level via controlling IR mRNA stability.
Neuropharmacology | 2011
Toshihiko Yanagita; Shinya Satoh; Yasuhito Uezono; Kiyotaka Matsuo; Takayuki Nemoto; Toyoaki Maruta; Norie Yoshikawa; Tomomi Iwakiri; Kouichiro Minami; Manabu Murakami
Insulin-like growth factor-1 (IGF-1) plays important roles in the regulation of neuronal development. The electrical activity of Na(+) channels is crucial for the regulation of synaptic formation and maintenance/repair of neuronal circuits. Here, we examined the effects of chronic IGF-1 treatment on cell surface expression and function of Na(+) channels. In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, chronic IGF-1 treatment increased cell surface [(3)H]saxitoxin binding by 31%, without altering the Kd value. In cells treated with IGF-1, veratridine-induced (22)Na(+) influx, and subsequent (45)Ca(2+) influx and catecholamine secretion were augmented by 35%, 33%, 31%, respectively. Pharmacological properties of Na(+) channels characterized by neurotoxins were similar between nontreated and IGF-1-treated cells. IGF-1-induced up-regulation of [(3)H]saxitoxin binding was prevented by phosphatydil inositol-3 kinase inhibitors (LY204002 or wortmannin), or Akt inhibitor (Akt inhibitor IV). Glycogen synthase kinase-3 (GSK-3) inhibitors (LiCl, valproic acid, SB216763 or SB415286) also increased cell surface [(3)H]saxitoxin binding by ∼ 33%, whereas simultaneous treatment of IGF-1 with GSK-3 inhibitors did not produce additive increasing effect on [(3)H]saxitoxin binding. IGF-1 (100 nM) increased Ser(437)-phosphorylated Akt and Ser(9)-phosphorylated GSK-3β, and inhibited GSK-3β activity. Treatment with IGF-1, LiCl or SB216763 increased protein level of Na(+) channel α-subunit; it was prevented by cycloheximide. Either treatment increased α-subunit mRNA level by ∼ 48% and accelerated α-subunit gene transcription by ∼ 30% without altering α-subunit mRNA stability. Thus, inhibition of GSK-3β caused by IGF-1 up-regulates cell surface expression of functional Na(+) channels via acceleration of α-subunit gene transcription.