Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norio Shigematsu is active.

Publication


Featured researches published by Norio Shigematsu.


Nature | 2017

Extreme hydrothermal conditions at an active plate-bounding fault

Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.


New Zealand Journal of Geology and Geophysics | 2017

Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

Virginia G. Toy; Rupert Sutherland; John Townend; Michael John Allen; Leeza Becroft; Austin Boles; Carolyn Boulton; Brett M. Carpenter; Alan Cooper; Simon C. Cox; Christopher Daube; D. R. Faulkner; Angela Halfpenny; Naoki Kato; Stephen Keys; Martina Kirilova; Yusuke Kometani; Timothy A. Little; Elisabetta Mariani; Benjamin Melosh; Catriona Menzies; Luiz F. G. Morales; Chance Morgan; Hiroshi Mori; André R. Niemeijer; Richard J. Norris; David J. Prior; Katrina Sauer; Anja M. Schleicher; Norio Shigematsu

ABSTRACT During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.


Earth, Planets and Space | 2002

Development of the Hatagawa Fault Zone clarified by geological and geochronological studies

Tomoaki Tomita; Tomoyuki Ohtani; Norio Shigematsu; Hidemi Tanaka; Koichiro Fujimoto; Yoji Kobayashi; Yukari Miyashita; Kentaro Omura

The occurrence of mylonite and cataclasite, mineral assemblages of cataclasite, and the K-Ar ages of surrounding granitic rocks and dikes were studied to examine the possibility that the Hatagawa Fault Zone (HFZ), NE Japan was experienced under the conditions of the brittle-plastic transition. The Hatagawa Fault Zone is divided into three structural settings: mylonite zones with a sinistral sense of shear and a maximum thickness of 1 km, a cataclasite zone with a maximum thickness of about 100 m, and locally and sporadically developed small-scale shear zones. Occurrence of epidote and chlorite, lack of montmorillonite in cataclasite, and the coexistence of cataclasite and limestone mylonite suggest that the cataclasite was deformed at temperatures higher than 220°C. Crush zones in the mylonite near the cataclasite zone were recognized in one outcrop; they have a structure concordant with the surrounding mylonite and some fragments in them are dragged plastically. Granodiorite porphyry dikes near the HFZ intruding into cataclasite and mylonite with a sinistral sense of shear exhibit no deformational features. K-Ar ages of hornblende from host granitic rocks and from one granodiorite porphyry dike are 126 ± 6 to 95.7 ± 4.8 and 98.1 ± 2.5 Ma, respectively. These indicate that the fault activity gradually changed from mylonitization to cataclasis within 28 m.y., and suggest that the HFZ underwent a brittle-plastic transition during its activity.


Earth, Planets and Space | 2002

Water-rock interaction observed in the brittle-plastic transition zone

Koichiro Fujimoto; Tomoyuki Ohtani; Norio Shigematsu; Yukari Miyashita; Tomoaki Tomita; Hidemi Tanaka; Kentaro Omura; Yoji Kobayashi

Rock alteration and geochemistry of the fault rocks are examined to infer the characteristics of the fluid phase related to the ancient fault activity. The Hatagawa Fault Zone, northeast Japan, is an exhumed seismogenic zone which is characterized by close association of brittlely and plastically deformed fault rocks mostly derived from Cretaceous granitoids. Epidote and chlorite are dominant alteration minerals in both rocks. However, calcite is characteristically developed in the cataclastic part only. Decrease in oxygen isotope ratio and existence of epidote and chlorite, even in weakly deformed granodiorite, is evidence of water-rock interaction. The water/rock ratio is interpreted to be relatively small and fluid chemistry is buffered by host rock chemistry in the mylonite. The occurrence of calcite in brittle structures is explained by changes in water chemistry during shear zone evolution. CO2-rich fluid was probably introduced during cataclastic deformation and increased CO2 concentration resulted in precipitation of calcite.


Geochemistry Geophysics Geosystems | 2017

Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

John Townend; Rupert Sutherland; Virginia G. Toy; Mai-Linh Doan; Bernard Célérier; Cécile Massiot; Jamie Coussens; Tamara N. Jeppson; Lucie Janku-Capova; Léa Remaud; Phaedra Upton; Douglas R. Schmitt; Philippe A. Pezard; John W. Williams; Michael John Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Carolyn Boulton; Neil G. R. Broderick; Brett M. Carpenter; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon C. Cox; Lisa Craw; Jennifer Eccles; D. R. Faulkner; Jason Grieve

Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the faults principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.


Earth, Planets and Space | 2014

Stress reversal recorded in calcite vein cuttings from the Nankai accretionary prism, southwest Japan

Toru Takeshita; Asuka Yamaguchi; Norio Shigematsu

The Nankai Trough subduction zone in southwest Japan is a typical convergent margin where the Philippine Sea plate subducts in the northwest direction beneath the Eurasian plate, and devastating earthquakes have repeatedly occurred in this region in the past. In order to investigate the evolution of the stress state in the subduction zone, we analyzed deformation microstructures and the preferred orientation of calcite grains in two cuttings of calcite veins from Hole C0002F that was drilled through the inner wedge of the Nankai accretionary prism during the Integrated Ocean Discovery Program (IODP) Expedition 338 in 2012. For both samples collected at depths of 1,085.5 and 1,885.5 meters below the sea floor (mbsf), the c-axes of calcite grains are preferentially oriented perpendicular to the vein wall, which is indicative of competitive growth of calcite during the vein opening caused by a vein normal extension. Also, mechanical e-twins were developed in both samples, and these are inferred to have been developed under the same stress field as that responsible for the formation of calcite veins based on the paleostress analyses in grains with e-twins. For the calcite vein retrieved at the depth of 1,885.5 mbsf, kink bands were also developed by the compression in the direction perpendicular to the vein wall, which is indicative of stress reversal after the formation of mechanical e-twins. Although we could not reach a definite conclusion for the cause of the stress reversal, it could have occurred during either fold development or seismic cycles in the Nankai accretionary prism.


Earth, Planets and Space | 2004

Modeling slips and nucleation processes at the deeper part of the seismogenic zone

Bunichiro Shibazaki; Norio Shigematsu; Hidemi Tanaka

Important issues with regard to the generation processes of large inland earthquakes include how the stress concentrates and how nucleation starts in the deeper part of the seismogenic zone prior to the mainshock. We propose a model of earthquake generation processes that uses a constitutive law combining friction and flow processes. Using this law, we can represent fault behavior in which frictional slip coexists with flow processes at the frictional-viscous transition zone. We consider a limitted region where viscous deformation is high along the frictional-viscous transition zone, and investigate the role of this region in the nucleation process. During the interseismic period, slip velocity due to flow is much larger than frictional slip velocity in the region of low viscosity in the deeper part of the seismogenic zone. Large slip due to flow in this region is thought to cause stress to concentrate in the surrounding regions, and nucleation starts just above the low-viscosity region. Our numerical simulations indicate that the location of the nucleation process is determined by the nonuniform distribution of the depth of the frictional-viscous transition zone.


Earth, Planets and Space | 2004

Geochronological constraint on the brittle-plastic deformation along the Hatagawa Fault Zone, NE Japan

Tomoyuki Ohtani; Norio Shigematsu; Koichiro Fujimoto; Tomoaki Tomita; H. Iwano

K-Ar ages and fission-track ages of granitic rocks in the Hatagawa Fault Zone (HFZ), NE Japan were measured to examine the cooling history of the HFZ. The HFZ is an NNW-SSE trending fault zone in the Cretaceous granitic rocks, and consists of a conspicuous cataclasite and two types of mylonite with a sinistral sense of shear. The cataclasite zone is NNW-SSE trending and continuous over at least 40 km with a maximum thickness of 100 m. One type of mylonite is low-T mylonite, which is mainly developed for a length of 6 km along the HFZ. The other is high-T mylonite, which is widely distributed in the HFZ. Most of K-Ar ages of hornblende and biotite from granitic rocks are about 110 Ma and show no obvious differences along the strike of the HFZ or among different granite bodies. This implies that the granitic rocks in the HFZ have a similar cooling history and cooled rapidly from closure temperature of hornblende to that of biotite. Zircon fission-track analysis shows little possibility of reheating of the granitic rocks. This supports the formation of cataclasite and mylonite during the cooling of the granitic bodies. Fission-track ages of zircon and apatite from the samples in and near the areas where the low-T mylonite is developed are older than those for other areas. Infiltration of near-surface derived water into the low-T mylonite after plastic deformation may account for the accelerate cooling of granitic bodies.


Earth, Planets and Space | 2002

Growth of plastic shear zone and its duration inferred from theoretical consideration and observation of an ancient shear zone in the granitic crust

Hidemi Tanaka; Bunichiro Shibazaki; Norio Shigematsu; Koichiro Fujimoto; Tomoyuki Ohtani; Yukari Miyashita; Tomoaki Tomita; Kentaro Omura; Yoji Kobayashi; Jun Kameda

A new model for growth of plastic shear zone is proposed based on the basis of a theory of fluid dynamics coupled with a rheological constitutive function, and is applied to a natural shear zone. Mylonite, ultramylonite and other ductile fault rocks are well known to deform in a plastic flow regime. The rheological behavior of these kinds of rocks has been well documented as a non-linear viscous body, which is empirically described as , where : strain rate, τ: shear stress, Q: activation energy, R: universal gas constant, T: absolute temperature, and A and n are constants. Strain rate- and temperature-dependent viscosity is obtained by differentiating the equation, and simplified by substituting n = 1. Then, substitution of the equation into a diffusion equation, , derives an equation δ = 4[t/p · A exp(−Q/RT)]1/2, where δ: thickness of active layer of viscous deformation, ν: kinematic viscosity, and ρ: density. The duration of creep deformation along the ancient plastic shear zone (thickness: 0.076 m) is estimated to be around 760 s, in a temperature range from 300 to 500°C. This estimation is rather good agreement with intermittent creep during inter-seismic period, than steady state creep or co-seismic slip.


Archive | 2017

Alteration Reaction and Mass Transfer via Fluids with Progress of Fracturing along the Median Tectonic Line, Mie Prefecture, Southwest Japan

Yumi Kaneko; Toru Takeshita; yuto Watanabe; Norio Shigematsu; Koichiro Fujimoto

We have analyzed mass transfer in the cataclasite samples collected from the Median Tectonic Line, southwest Japan, in which the degree of fracturing is well correlated with the bulk rock chemical compositions determined by the X-ray fluorescence (XRF) analysis. The results of “isocon” analysis indicate not only a large volume increase up to 110% but also the two-stage mass transfer during cataclasis. At the first stage from the very weakly to weakly fractured rocks, the weight percents of SiO2, Na2O, and K2O increase, while those of TiO2, FeO, MnO, MgO, and CaO decrease. At the second stage from the weakly to moderately and strongly fractured rocks, the trend of mass transfer is reversed. The principal component analysis reveals that the variation of chemical compositions in the cataclasite samples can be mostly interpreted by the mass transfer via fluids and by the difference in chemical composition in the protolith rocks to lesser degree. Finally, the changes in the modal composition of minerals with increasing cataclasis analyzed by the X-ray diffraction (XRD) with the aid of “RockJock” software clearly elucidate that the mass transfer of chemical elements was caused by dissolution and precipitation of minerals via fluids in the cataclasite samples.

Collaboration


Dive into the Norio Shigematsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Mori

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

John Townend

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Rupert Sutherland

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoji Koizumi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge