Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norio Takata is active.

Publication


Featured researches published by Norio Takata.


The Journal of Neuroscience | 2011

Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity In Vivo

Norio Takata; Tsuneko Mishima; Chihiro Hisatsune; Terumi Nagai; Etsuko Ebisui; Katsuhiko Mikoshiba; Hajime Hirase

Global brain state dynamics regulate plasticity in local cortical circuits, but the underlying cellular and molecular mechanisms are unclear. Here, we demonstrate that astrocyte Ca2+ signaling provides a critical bridge between cholinergic activation, associated with attention and vigilance states, and somatosensory plasticity in mouse barrel cortex in vivo. We investigated first whether a combined stimulation of mouse whiskers and the nucleus basalis of Meynert (NBM), the principal source of cholinergic innervation to the cortex, leads to enhanced whisker-evoked local field potential. This plasticity is dependent on muscarinic acetylcholine receptors (mAChR) and N-methyl-d-aspartic acid receptors (NMDARs). During the induction of this synaptic plasticity, we find that astrocytic [Ca2+]i is pronouncedly elevated, which is blocked by mAChR antagonists. The elevation of astrocytic [Ca2+]i is crucial in this type of synaptic plasticity, as the plasticity could not be induced in inositol-1,4,5-trisphosphate receptor type 2 knock-out (IP3R2-KO) mice, in which astrocytic [Ca2+]i surges are diminished. Moreover, NBM stimulation led to a significant increase in the extracellular concentration of the NMDAR coagonist d-serine in wild-type mice when compared to IP3R2-KO mice. Finally, plasticity in IP3R2-KO mice could be rescued by externally supplying d-serine. Our data present coherent lines of in vivo evidence for astrocytic involvement in cortical plasticity. These findings suggest an unexpected role of astrocytes as a gate for cholinergic plasticity in the cortex.


PLOS ONE | 2008

Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

Norio Takata; Hajime Hirase

Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca2+) concentration is important for astrocytes as Ca2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca2+ dynamics by investigating two distinct EEG states (“synchronized” vs. “de-synchronized” states). We found that astrocytes in L1 had nearly twice higher Ca2+ activity than L2/3. Furthermore, Ca2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca2+ activity. These results suggest that spontaneous astrocytic Ca2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity.


PLOS ONE | 2013

Cerebral Blood Flow Modulation by Basal Forebrain or Whisker Stimulation Can Occur Independently of Large Cytosolic Ca2+ Signaling in Astrocytes

Norio Takata; Terumi Nagai; Katsuya Ozawa; Yuki Oe; Katsuhiko Mikoshiba; Hajime Hirase

We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.


Neuropsychopharmacology | 2015

Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice

Tomomi Aida; Junichi Yoshida; Masatoshi Nomura; Asami Tanimura; Yusuke Iino; Miho Soma; Ning Bai; Yukiko Ito; Wanpeng Cui; Hidenori Aizawa; Michiko Yanagisawa; Terumi Nagai; Norio Takata; Kenji F. Tanaka; Ryoichi Takayanagi; Masanobu Kano; Magdalena Götz; Hajime Hirase; Kohichi Tanaka

An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette’s syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLASTCreERT2/+/GLT1flox/flox, iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors.


PLOS ONE | 2011

Remodeling of Monoplanar Purkinje Cell Dendrites during Cerebellar Circuit Formation.

Megumi Kaneko; Kazuhiko Yamaguchi; Mototsugu Eiraku; Motohiko Sato; Norio Takata; Yoshimoto Kiyohara; Masayoshi Mishina; Hajime Hirase; Tsutomu Hashikawa; Mineko Kengaku

Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.


Philosophical Transactions of the Royal Society B | 2014

Volume transmission signalling via astrocytes

Hajime Hirase; Youichi Iwai; Norio Takata; Yoshiaki Shinohara; Tsuneko Mishima

The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures.


PLOS ONE | 2015

Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.

Norio Takata; Keitaro Yoshida; Yuji Komaki; Ming Xu; Yuki Sakai; Keigo Hikishima; Masaru Mimura; Hideyuki Okano; Kenji F. Tanaka

The dorsal and ventral hippocampal regions (dHP and vHP) are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP) and multi unit activities (MUA) upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2). Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD) fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP), which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS) were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.


The Journal of Neuroscience | 2017

Ventrolateral striatal medium spiny neurons positively regulate food-incentive, goal-directed behavior independently of D1 and D2 selectivity

Akiyo Natsubori; Iku Tsustui-Kimura; Hiroshi Nishida; Youcef Bouchekioua; Hiroshi Sekiya; Motokazu Uchigashima; Masahiko Watanabe; Alban de Kerchove d'Exaerde; Masaru Mimura; Norio Takata; Kenji F. Tanaka

The ventral striatum is involved in motivated behavior. Akin to the dorsal striatum, the ventral striatum contains two parallel pathways: the striatomesencephalic pathway consisting of dopamine receptor Type 1-expressing medium spiny neurons (D1-MSNs) and the striatopallidal pathway consisting of D2-MSNs. These two genetically identified pathways are thought to encode opposing functions in motivated behavior. It has also been reported that D1/D2 genetic selectivity is not attributed to the anatomical discrimination of two pathways. We wanted to determine whether D1- and D2-MSNs in the ventral striatum functioned in an opposing manner as previous observations claimed, and whether D1/D2 selectivity corresponded to a functional segregation in motivated behavior of mice. To address this question, we focused on the lateral portion of ventral striatum as a region implicated in food-incentive, goal-directed behavior, and recorded D1 or D2-MSN activity by using a gene-encoded ratiometric Ca2+ indicator and by constructing a fiberphotometry system, and manipulated their activities via optogenetic inhibition during ongoing behaviors. We observed concurrent event-related compound Ca2+ elevations in ventrolateral D1- and D2-MSNs, especially at trial start cue-related and first lever press-related times. D1 or D2 selective optogenetic inhibition just after the trial start cue resulted in a reduction of goal-directed behavior, indicating a shared coding of motivated behavior by both populations at this time. Only D1-selective inhibition just after the first lever press resulted in the reduction of behavior, indicating D1-MSN-specific coding at that specific time. Our data did not support opposing encoding by both populations in food-incentive, goal-directed behavior. SIGNIFICANCE STATEMENT An opposing role of dopamine receptor Type 1 or Type 2-expressing medium spiny neurons (D1-MSNs or D2-MSNs) on striatum-mediated behaviors has been widely accepted. However, this idea has been questioned by recent reports. In the present study, we measured concurrent Ca2+ activity patterns of D1- and D2-MSNs in the ventrolateral striatum during food-incentive, goal-directed behavior in mice. According to Ca2+ activity patterns, we conducted timing-specific optogenetic inhibition of each type of MSN. We demonstrated that both D1- and D2-MSNs in the ventrolateral striatum commonly and positively encoded action initiation, whereas only D1-MSNs positively encoded sustained motivated behavior. These findings led us to reconsider the prevailing notion of a functional segregation of MSN activity in the ventral striatum.


Journal of Neuroscience Methods | 2016

Physiological effects of a habituation procedure for functional MRI in awake mice using a cryogenic radiofrequency probe

Keitaro Yoshida; Yu Mimura; Ryosuke Ishihara; Hiroshi Nishida; Yuji Komaki; Tomohito Minakuchi; Tomokazu Tsurugizawa; Masaru Mimura; Hideyuki Okano; Kenji F. Tanaka; Norio Takata

BACKGROUND Functional magnetic resonance imaging (fMRI) in mice is typically performed under anesthesia due to difficulties in holding the head of awake mice stably with a conventional three-point fixation method that uses a tooth-bar and earplugs. Although some studies have succeeded in fMRI in awake mice by attaching a head-post on the skull, this cannot be applied to fMRI using a high signal-to-noise ratio (SNR) cryogenic MRI-detector, CryoProbe, because it covers the head of a mouse closely. NEW METHOD We developed head-fixation implements for awake mice that are applicable to fMRI using CryoProbe. RESULTS A head-bar was surgically attached to the skull of a mouse that was then habituated to a mock fMRI-environment, two hours/day for eight days with physiological examinations of body-weight, fecal weight, electromyogram (EMG), and electrocardiogram. EMG power decreased with just one day of habituation, whereas heart rate decreased after at least seven days of habituation. Estimated head motions of awake mice during fMRI were significantly smaller than a voxel size. Unexpectedly, temporal SNR of fMRI signals for awake mice was higher than that for anesthetized mice held by a conventional method. Functional connectivity in the brain of both anesthetized and awake mice showed bilateral and unilateral networks. COMPARISON WITH EXISTING METHOD(S): fMRI using CryoProbe had been performed on anesthetized mice previously. Our method does not use anesthetics during habituation or fMRI. CONCLUSION Our method would be beneficial for translational research using fMRI in mice and humans because human fMRI is typically performed without anesthetics.


The Journal of Neuroscience | 2015

Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits

Kazuhiro Ishii; Ken Ichiro Kubo; Toshihiro Endo; Keitaro Yoshida; Seico Benner; Yukiko Ito; Hidenori Aizawa; Michihiko Aramaki; Akihiro Yamanaka; Kohichi Tanaka; Norio Takata; Kenji F. Tanaka; Masaru Mimura; Chiharu Tohyama; Masaki Kakeyama; Kazunori Nakajima

Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. SIGNIFICANCE STATEMENT Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.

Collaboration


Dive into the Norio Takata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terumi Nagai

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Tsuneko Mishima

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yuji Komaki

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuhiko Mikoshiba

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge