Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji F. Tanaka is active.

Publication


Featured researches published by Kenji F. Tanaka.


Cell | 2008

Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum

Vijay K. Yadav; Je Hwang Ryu; Nina Suda; Kenji F. Tanaka; Jay A. Gingrich; Günther Schütz; Francis H. Glorieux; Cherie Chiang; Jeffrey D. Zajac; Karl L. Insogna; J. John Mann; René Hen; Patricia Ducy; Gerard Karsenty

Loss- and gain-of-function mutations in the broadly expressed gene Lrp5 affect bone formation, causing osteoporosis and high bone mass, respectively. Although Lrp5 is viewed as a Wnt coreceptor, osteoblast-specific disruption of beta-Catenin does not affect bone formation. Instead, we show here that Lrp5 inhibits expression of Tph1, the rate-limiting biosynthetic enzyme for serotonin in enterochromaffin cells of the duodenum. Accordingly, decreasing serotonin blood levels normalizes bone formation and bone mass in Lrp5-deficient mice, and gut- but not osteoblast-specific Lrp5 inactivation decreases bone formation in a beta-Catenin-independent manner. Moreover, gut-specific activation of Lrp5, or inactivation of Tph1, increases bone mass and prevents ovariectomy-induced bone loss. Serotonin acts on osteoblasts through the Htr1b receptor and CREB to inhibit their proliferation. By identifying duodenum-derived serotonin as a hormone inhibiting bone formation in an Lrp5-dependent manner, this study broadens our understanding of bone remodeling and suggests potential therapies to increase bone mass.


Cell | 2009

A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure

Vijay K. Yadav; Franck Oury; Nina Suda; Zhong-Wu Liu; Xiao-Bing Gao; Cyrille Confavreux; Kristen C. Klemenhagen; Kenji F. Tanaka; Jay A. Gingrich; X. Edward Guo; Laurence H. Tecott; J. John Mann; René Hen; Tamas L. Horvath; Gerard Karsenty

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


The Journal of Neuroscience | 2011

Functional Connectome of the Striatal Medium-Spiny Neuron

Nao Chuhma; Kenji F. Tanaka; René Hen; Stephen Rayport

Dopamine system disorders ranging from movement disorders to addiction and schizophrenia involve striatal medium spiny neurons (MSNs), yet their functional connectivity has been difficult to determine comprehensively. We generated a mouse with conditional channelrhodopsin-2 expression restricted to medium spiny neurons and assessed the specificity and strength of their intrinsic connections in the striatum and their projections to the globus pallidus and the substantia nigra. In the striatum, medium spiny neurons connected with other MSNs and tonically active cholinergic interneurons, but not with fast-spiking GABA interneurons. In the globus pallidus, medium spiny neurons connected strongly with one class of electrophysiologically identified neurons, but weakly with the other. In the substantia nigra, medium spiny neurons connected strongly with GABA, but not with dopamine neurons. Projections to the globus pallidus showed solely D2-mediated presynaptic inhibition, whereas projections to the substantia nigra showed solely D1-mediated presynaptic facilitation. This optogenetic approach defines the functional connectome of the striatal medium spiny neuron.


Science | 2012

Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism

Stéphane J. Baudouin; Julien J. Gaudias; Stefan S. Gerharz; Laetitia L. Hatstatt; Kuikui K. Zhou; Pradeep P. Punnakkal; Kenji F. Tanaka; Will W. Spooren; René Hen; Chris I. De Zeeuw; Kaspar K. Vogt; Peter Scheiffele

Reversing Autism in Mice Autism comprises a heterogeneous group of neurodevelopmental disorders characterized by defects in communication and social inter action. A group of nonsyndromic forms of autism is associated with mutations in the neuroligin genes, which encode postsynaptic adhesion molecules. Using a reversible knockout approach, Baudouin et al. (p. 128, published online 13 September) investigated the in vivo functions of neuroligin-3 in the mouse cerebellum. Mutant mice showed a major defect in metabotropic glutamate receptor–dependent, long-term potentiation; disrupted heterosynaptic competition; and ectopic synapse formation in vivo. These synaptic defects could be rescued by reactivation of the neuroligin gene in the adult. Deficiency or mutation of the postsynaptic adhesion protein neuroligin-3 may contribute to cognitive defects in autism. The genetic heterogeneity of autism poses a major challenge for identifying mechanism-based treatments. A number of rare mutations are associated with autism, and it is unclear whether these result in common neuronal alterations. Monogenic syndromes, such as fragile X, include autism as one of their multifaceted symptoms and have revealed specific defects in synaptic plasticity. We discovered an unexpected convergence of synaptic pathophysiology in a nonsyndromic form of autism with those in fragile X syndrome. Neuroligin-3 knockout mice (a model for nonsyndromic autism) exhibited disrupted heterosynaptic competition and perturbed metabotropic glutamate receptor–dependent synaptic plasticity, a hallmark of fragile X. These phenotypes could be rescued by reexpression of neuroligin-3 in juvenile mice, highlighting the possibility of reverting neuronal circuit alterations in autism after the completion of development.


Neuron | 2014

Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis

Christine A. Denny; Mazen A. Kheirbek; Eva L. Alba; Kenji F. Tanaka; Rebecca A. Brachman; Kimberly B. Laughman; Nicole K. Tomm; Gergely F. Turi; Attila Losonczy; René Hen

Memory traces are believed to be ensembles of cells used to store memories. To visualize memory traces, we created a transgenic line that allows for the comparison between cells activated during encoding and expression of a memory. Mice re-exposed to a fear-inducing context froze more and had a greater percentage of reactivated cells in the dentate gyrus (DG) and CA3 than mice exposed to a novel context. Over time, these differences disappeared, in keeping with the observation that memories become generalized. Optogenetically silencing DG or CA3 cells that were recruited during encoding of a fear-inducing context prevented expression of the corresponding memory. Mice with reduced neurogenesis displayed less contextual memory and less reactivation in CA3 but, surprisingly, normal reactivation in the DG. These studies suggest that distinct memory traces are located in the DG and in CA3 but that the strength of the memory is related to reactivation in CA3.


Physics in Medicine and Biology | 2002

Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR

Huijuan Zhao; Yukari Tanikawa; Feng Gao; Yoichi Onodera; Angelo Sassaroli; Kenji F. Tanaka; Yukio Yamada

The optical differential pathlength factor (DPF) is an important parameter for physiological measurement using near infrared spectroscopy, but for the human adult head it has been available only for the forehead. Here we report measured DPF results for the forehead, somatosensory motor and occipital regions from measurements on 11 adult volunteers using a time-resolved optical imaging system. The optode separation was about 30 mm and the wavelengths used were 759 nm, 799 nm and 834 nm. Measured DPFs were 7.25 for the central forehead and 6.25 for the temple region at 799 nm. For the central somatosensory and occipital areas (10 mm above the inion), DPFs at 799 nm are 7.5 and 8.75, respectively. Less than 10% decreases of DPF for all these regions were observed when the wavelength increased from 759 nm to 834 nm. To compare these DPF maps with the anatomical structure of the head, a Monte Carlo simulation was carried out to calculate DPF for these regions by using a two-layered semi-infinite model and assuming the thickness of the upper layer to be the sum of the thicknesses of scalp and skull, which was measured from MRI images of a subjects head. The DPF data will be useful for quantitative monitoring of the haemodynamic changes occurring in adult heads.


Genome Biology | 2015

Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice.

Tomomi Aida; Keiho Chiyo; Takako Usami; Harumi Ishikubo; Risa Imahashi; Yusaku Wada; Kenji F. Tanaka; Tetsushi Sakuma; Takashi Yamamoto; Kohichi Tanaka

Although the CRISPR/Cas system has enabled one-step generation of knockout mice, low success rates of cassette knock-in limit its application range. Here we show that cloning-free, direct nuclear delivery of Cas9 protein complex with chemically synthesized dual RNAs enables highly efficient target digestion, leading to generation of knock-in mice carrying a functional cassette with up to 50% efficiency, compared with just 10% by a commonly used method consisting of Cas9 mRNA and single guide RNA. Our cloning-free CRISPR/Cas system facilitates rapid one-step generation of cassette knock-in mice, accelerating functional genomic research by providing various in vivo genetic tools.


Neuropharmacology | 2008

Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice.

Thierry Deltheil; Bruno P. Guiard; Julie Cerdan; Denis J. David; Kenji F. Tanaka; Christelle Repérant; Jean-Philippe Guilloux; François Coudoré; René Hen; Alain M. Gardier

Antidepressants such as Selective Serotonin Reuptake Inhibitors (SSRI) act as indirect agonists of serotonin (5-HT) receptors. Although these drugs produce a rapid blockade of serotonin transporters (SERTs) in vitro, several weeks of treatment are necessary to observe clinical benefits. This paradox has not been solved yet. Recent studies have identified modifications of intracellular signaling proteins and target genes that could contribute to antidepressant-like activity of SSRI (e.g., increases in neurogenesis and BDNF protein levels), and may explain, at least in part, their long delay of action. Although these data suggest a positive regulation of 5-HT on the expression of the gene coding for BDNF, the reciprocal effects of BDNF on brain 5-HT neurotransmission remains poorly documented. To study the impact of BDNF on serotonergic activity, a dual experimental strategy was used to analyze neurochemical and behavioral consequences of its decrease (strategy 1) or increase (strategy 2) in the brain of adult male mice. (1) In heterozygous BDNF+/- mice in which brain BDNF protein levels were decreased by half, an enhancement of basal extracellular 5-HT levels (5-HText) that induced a down-regulation of SERT, i.e., a decrease in its capacity to reuptake 5-HT, was found in the hippocampus. In addition, the SSRI, paroxetine, failed to increase hippocampal 5-HText in BDNF+/- mice, while it produces robust effects in wild-type littermates. Thus, BDNF+/- mice can be viewed as an animal model of genetic resistance to serotonergic antidepressant drugs. (2) In wild-type BDNF+/+ mice, the effects of intra-hippocampal (vHi) injection of BDNF (100 ng) in combination with a SSRI was examined by using intracerebral microdialysis and behavioral paradigms that predict an antidepressant- and anxiolytic-like activity of a molecule [the forced swim test (FST) and the open field paradigm (OF) respectively]. BDNF induced a rapid and transient increase in paroxetine response on 5-HText in the adult hippocampus, which was correlated with a potentiation of its antidepressant-like activity in the FST. The effects of BDNF were selectively blocked by K252a, an antagonist of its high-affinity TrkB receptor. Such a correlation between neurochemical and behavioral effects of [BDNF+SSRI] co-administration suggests that its antidepressant-like activity is linked to the activation of 5-HT neurotransmission in the adult hippocampus. BDNF also had a facilitatory effect on anxiety-like behavior in the OF test, and paroxetine prevented this anxiogenesis. What was the mechanism by which BDNF exerted these latter effects? Surprisingly, by using zero net flux method of quantitative microdialysis in vivo, we found that an intra-hippocampal BDNF injection in wild-type mice decreased the functional activity of SERT as observed in BDNF+/- mice. However, the decreased capacity of SERT to reuptake 5-HT was not associated to an increase in basal 5-HText in the hippocampus of WT mice. Interestingly, using in situ hybridization experiments indicated that TrkB receptor mRNA was expressed in the hippocampus and dorsal raphe nucleus in adult mice suggesting that the neurochemical and behavioral effects of intra-hippocampal BDNF injection can mobilize both pre- and post-synaptic elements of the brain 5-HT neurotransmission. Taken together, these set of experiments unveiled a relative opposition of neurochemical and behavioral responses following either a decrease (in BDNF+/- mutant mice) or an increase in brain BDNF levels (bilateral intra-hippocampal injection) in adult mice. In view of developing new antidepressant drug strategy, a poly-therapy combining BDNF with a chronic SSRI treatment could thus improve the efficacy of current medications.


The Journal of Neuroscience | 2014

Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation

Tomomi Tsunematsu; Takafumi Ueno; Sawako Tabuchi; Ayumu Inutsuka; Kenji F. Tanaka; Hidetoshi Hasuwa; Thomas S. Kilduff; Akira Terao; Akihiro Yamanaka

Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.


The Journal of Neuroscience | 2012

Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path

David H. Gire; Kevin M. Franks; Joseph D. Zak; Kenji F. Tanaka; Jennifer D. Whitesell; Abigail A. Mulligan; René Hen; Nathan E. Schoppa

Within the olfactory system, information flow from the periphery onto output mitral cells (MCs) of the olfactory bulb (OB) has been thought to be mediated by direct synaptic inputs from olfactory sensory neurons (OSNs). Here, we performed patch-clamp measurements in rat and mouse OB slices to investigate mechanisms of OSN signaling onto MCs, including the assumption of a direct path, using electrical and optogenetic stimulation methods that selectively activated OSNs. We found that MCs are in fact not typically activated by direct OSN inputs and instead require a multistep, diffuse mechanism involving another glutamatergic cell type, the tufted cells. The preference for a multistep mechanism reflects the fact that signals arising from direct OSN inputs are drastically shunted by connexin 36-mediated gap junctions on MCs, but not tufted cells. An OB circuit with tufted cells intermediate between OSNs and MCs suggests that considerable processing of olfactory information occurs before its reaching MCs.

Collaboration


Dive into the Kenji F. Tanaka's collaboration.

Top Co-Authors

Avatar

Kazuhiro Ikenaka

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge