Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noura Raddadi is active.

Publication


Featured researches published by Noura Raddadi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector

Guido Favia; Irene Ricci; Claudia Damiani; Noura Raddadi; Elena Crotti; Massimo Marzorati; Aurora Rizzi; Roberta Urso; Lorenzo Brusetti; Sara Borin; Diego Mora; Patrizia Scuppa; Luciano Pasqualini; Emanuela Clementi; Marco Genchi; Silvia Corona; Ilaria Negri; G. Grandi; Alberto Alma; L. Kramer; Fulvio Esposito; Claudio Bandi; Luciano Sacchi; Daniele Daffonchio

Here, we show that an α-proteobacterium of the genus Asaia is stably associated with larvae and adults of Anopheles stephensi, an important mosquito vector of Plasmodium vivax, a main malaria agent in Asia. Asaia bacteria dominate mosquito-associated microbiota, as shown by 16S rRNA gene abundance, quantitative PCR, transmission electron microscopy and in situ-hybridization of 16S rRNA genes. In adult mosquitoes, Asaia sp. is present in high population density in the female gut and in the male reproductive tract. Asaia sp. from An. stephensi has been cultured in cell-free media and then transformed with foreign DNA. A green fluorescent protein-tagged Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission. The larval gut and the male reproductive system were also colonized by the transformed Asaia sp. strain. As an efficient inducible colonizer of mosquitoes that transmit Plasmodium sp., Asaia sp. may be a candidate for malaria control.


Environmental Microbiology | 2009

Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders

Elena Crotti; Claudia Damiani; Massimo Pajoro; Elena Gonella; Aurora Rizzi; Irene Ricci; Ilaria Negri; Patrizia Scuppa; Paolo Rossi; Patrizia Ballarini; Noura Raddadi; Massimo Marzorati; Luciano Sacchi; Emanuela Clementi; Marco Genchi; Mauro Mandrioli; Claudio Bandi; Guido Favia; Alberto Alma; Daniele Daffonchio

Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.


Applied and Environmental Microbiology | 2006

A Novel Bacteroidetes Symbiont Is Localized in Scaphoideus titanus, the Insect Vector of Flavescence Dorée in Vitis vinifera

Massimo Marzorati; Alberto Alma; Luciano Sacchi; Massimo Pajoro; Simona Palermo; Lorenzo Brusetti; Noura Raddadi; Annalisa Balloi; Rosemarie Tedeschi; Emanuela Clementi; Silvia Corona; Fabio Quaglino; Piero Attilio Bianco; Tiziana Beninati; Claudio Bandi; Daniele Daffonchio

ABSTRACT Flavescence dorée (FD) is a grapevine disease that afflicts several wine production areas in Europe, from Portugal to Serbia. FD is caused by a bacterium, “Candidatus Phytoplasma vitis,” which is spread throughout the vineyards by a leafhopper, Scaphoideus titanus (Cicadellidae). After collection of S. titanus specimens from FD-contaminated vineyards in three different areas in the Piedmont region of Italy, we performed a survey to characterize the bacterial microflora associated with this insect. Using length heterogeneity PCR with universal primers for bacteria we identified a major peak associated with almost all of the individuals examined (both males and females). Characterization by denaturing gradient gel electrophoresis confirmed the presence of a major band that, after sequencing, showed a 97 to 99% identity with Bacteroidetes symbionts of the “Candidatus Cardinium hertigii” group. In addition, electron microscopy of tissues of S. titanus fed for 3 months on phytoplasma-infected grapevine plants showed bacterial cells with the typical morphology of “Ca. Cardinium hertigii.” This endosymbiont, tentatively designated ST1-C, was found in the cytoplasm of previtellogenic and vitellogenic ovarian cells, in the follicle cells, and in the fat body and salivary glands. In addition, cell morphologies resembling those of “Ca. Phytoplasma vitis” were detected in the midgut, and specific PCR assays indicated the presence of the phytoplasma in the gut, fat body and salivary glands. These results indicate that ST1-C and “Ca. Phytoplasma vitis” have a complex life cycle in the body of S. titanus and are colocalized in different organs and tissues.


Journal of Applied Entomology | 2011

Gut microbiome dysbiosis and honeybee health

Chadlia Hamdi; Annalisa Balloi; Jihène Essanaa; Elena Crotti; Elena Gonella; Noura Raddadi; Irene Ricci; Abdellatif Boudabous; Sara Borin; A. Manino; Claudio Bandi; Alberto Alma; Daniele Daffonchio; Ameur Cherif

Since a few decades, apiculture is facing important economic losses worldwide with general major consequences in many areas of agriculture. A strong attention has been paid towards the phenomenon named Colony Collapse Disorder in which colonies suddenly disappear with no clear explanations. Honeybee colonies can be affected by abiotic factors, such as environmental pollution or insecticide applications for agricultural purposes. Also biotic stresses cause colony losses, including bacterial (e.g. Paenibacillus larvae) and fungal (e.g. Ascosphaera apis) pathogens, microsporidia (e.g. Nosema apis), parasites (i.e. Varroa destructor) and several viruses. In the light of recent research, intestinal dysbiosis, considered as the relative disproportion of the species within the native microbiota, has shown to affect human and animal health. In arthropods, alteration of the gut microbial climax community has been shown to be linked to health and fitness disequilibrium, like in the medfly Ceratitis capitata for which low mate competitiveness is determined by a gut microbial community imbalance. According to these observations, it is possible to hypothesize that dysbiosis may have a role in disease occurrence also in honeybees. Here we aim to discuss the current knowledge on dysbiosis in the honeybee and its relation with honeybee health by reviewing the investigations of the microbial diversity associated to honeybees and the recent experiments performed to control bee diseases by microbial symbionts. We conclude that, despite the importance of a good functionality of the associated microbiota in preserving insect health has been proved, the mechanisms involved in honeybee gut dysbiosis are still unknown. Accurate in vitro, in vivo and in field investigations are required under healthy, diseased and stressed conditions for the host.


Critical Reviews in Food Science and Nutrition | 2012

The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs

Aurora Rizzi; Noura Raddadi; Claudia Sorlini; Lise Nordgrd; Kaare Magne Nielsen; Daniele Daffonchio

The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.


Journal of Basic Microbiology | 2009

Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments.

Besma Ettoumi; Noura Raddadi; Sara Borin; Daniele Daffonchio; Abdellatif Boudabous; Ameur Cherif

Members of the genus Bacillus and related genera are ubiquitous in nature. However, Bacillus species isolated from marine sediments have attracted less interest respect to their terrestrial relatives. Here, we report the phylogenetic diversity of a collection of 96 Bacilli, isolated from 17 distinct stations of 5 oceanographic campaigns. The diversity was analysed by phenotypic and molecular approaches based on the amplified rDNA restriction analysis (ARDRA), amplification of the internal transcribed spacers (ITS‐PCR) and on 16S rRNA sequencing. Intra‐specific polymorphism was efficiently detected by biochemical analysis and ARDRA while results of ITS‐PCR were in agreement with 16S rRNA sequencing. The identification results assigned 68% of the isolates to the species B. subtilis, B. licheniformis, B. pumilus and B. cereus. Phylogenetic analysis allowed the separation of 9 isolates in a clade that may represent a group of obligate marine Bacillus since they clustered with B. firmus, B. foraminis and marine isolates with metal oxidation and bioaccumulation capabilities. The remaining isolates showed a close affiliation to the genera Virgibacillus, Gracilibacillus and Paenibacillus. The widespread of Bacilli and their high diversity level observed in this work point out the need of more extensive studies to understand their distribution and ecology in deep‐sea environments. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Journal of Basic Microbiology | 2009

Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol.

Noura Raddadi; Abir Belaouis; Isabella Tamagnini; Bjarne Munk Hansen; Niels Bohse Hendriksen; Abdellatif Boudabous; Ameur Cherif; Daniele Daffonchio

Sixteen Bacillus thuringiensis (Bt) strains were screened for their anti‐insect, antibacterial and antifungal determinants by phenotypic tests and PCR targeting major insecticidal proteins and complements, chitinases, lactonases, β‐1,3‐glucanases and zwittermicinA. Six strains had genes of at least two major insecticidal toxins and of insecticidal complements. With regard to fungal biocontrol, all the strains inhibited Fusarium oxysporum and Aspergillus flavus growth and four strains had all or most of the antifungal determinants examined, with strain Bt HD932 showing the widest antifungal activity spectrum. Autolysins, bacteriocin and AHL‐lactonases were produced by all or most of the tested strains with different activity spectra including pathogens like Listeria monocytogenes. Safety evaluation was carried out via PCR by screening the B. cereus psychrotolerance‐related genes, toxin genes and the virulence pleiotropic regulator plcR. Diarrheal enterotoxins and other toxin genes were widespread among the collection with strains Bt HD9 and H45 lacking psychrotolerance‐related genes, while five strains were positive. Only three strains (BMG1.7, H172, H156) resulted positive with primer sets targeting partial or complete plcR gene. By Vero Cell Assays, Bt HD868 followed by Bt HD9 were shown to be the safest strains. These polyvalent and safe Bt strains could be very promising in field application. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Journal of Basic Microbiology | 2008

Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi-induced olive knots

Hadda Ouzari; Amel Khsairi; Noura Raddadi; Leila Jaoua; Abdennaceur Hassen; Mokhtar Zarrouk; Daniele Daffonchio; Abdellatif Boudabous

Forty three strains were isolated from knots induced by Pseudomonas savastanoi in different olive cultivars. All the selected bacteria were shown to produce variable amounts of the plant growth hormone indole‐3‐acetic acid (IAA). Amplification of the intergenic transcribed spacers (ITS) between 16S and 23S rDNA genes, allowed the clustering of the isolates into seven distinct groups. All isolates from ITS group 1 were positive to the Pseudomonas savastanoi pv. savastanoi specific iaa L gene as shown by PCR. Partial sequencing of 16S rDNA gene confirmed the identity of these isolates to Pseudomonas savastanoi strains and allowed to tentatively assign the other isolates from the remaining ITS groups to Pantoea oleae/agglomerans, Burkholderia cepacia, Pseudomonas putida, Stenotrophomonas maltophilia and Hafnia alvei. Identification of endophytic knot‐derived isolates revealed association of various saprophytic and putative human pathogenic bacteria with P. savastanoi pv. savastanoi in knot environment of olive infected trees. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Annals of Microbiology | 2007

Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains

Noura Raddadi; Ameur Cherif; Hadda Ouzari; Massimo Marzorati; Lorenzo Brusetti; Abdellatif Boudabous; Daniele Daffonchio

The entomopathogenic bacteriumBacillus thuringiensis is widely used for the control of many agricultural insect pests and vectors of human diseases. Several studies reported also on its antibacterial and antifungal activities. However, to our knowledge there were no studies dealing with its capacity to act as a plant growth promoting bacterium. This review surveys the potential ofB. thuringiensis as a polyvalent biocontrol agent, a biostimulator and biofertiliser bacterium that could promote the plant growth. Also, discussed is the safety ofB. thuringiensis as a bacterium phylogenetically related toBacillus cereus the opportunistic human pathogen andBacillus anthracis, the etiological agent of anthrax.


Canadian Journal of Microbiology | 2007

Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting

Ameur Cherif; Besma Ettoumi; Noura Raddadi; Daniele Daffonchio; Abdellatif Boudabous

The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.

Collaboration


Dive into the Noura Raddadi's collaboration.

Top Co-Authors

Avatar

Daniele Daffonchio

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Favia

University of Camerino

View shared research outputs
Researchain Logo
Decentralizing Knowledge