Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noureddine Lazar is active.

Publication


Featured researches published by Noureddine Lazar.


Journal of Bone and Mineral Research | 2008

Cooperative Regulation of Chondrocyte Differentiation by CCN2 and CCN3 Shown by a Comprehensive Analysis of the CCN Family Proteins in Cartilage

Harumi Kawaki; Satoshi Kubota; Akiko Suzuki; Noureddine Lazar; Tomohiro Yamada; Tatsushi Matsumura; Toshihiro Ohgawara; Takeyasu Maeda; Bernard Perbal; Karen M. Lyons; Masaharu Takigawa

CCN2 is best known as a promoter of chondrocyte differentiation among the CCN family members, and its null mice display skeletal dysmorphisms. However, little is known concerning roles of the other CCN members in chondrocytes. Using both in vivo and in vitro approaches, we conducted a comparative analysis of CCN2‐null and wildtype mice to study the roles of CCN2 and the other CCN proteins in cartilage development. Immunohistochemistry was used to evaluate the localization of CCN proteins and other chondrocyte‐associated molecules in the two types of mice. Moreover, gene expression levels and the effects of exogenous CCN proteins on chondrocyte proliferation, differentiation, and the expression of chondrocyte‐associated genes in their primary chondrocytes were evaluated. Ccn3 was dramatically upregulated in CCN2‐null cartilage and chondrocytes. This upregulation was associated with diminished cell proliferation and delayed differentiation. Consistent with the in vivo findings, CCN2 deletion entirely retarded chondrocyte terminal differentiation and decreased the expression of several chondrocyte‐associated genes in vitro, whereas Ccn3 expression drastically increased. In contrast, the addition of exogenous CCN2 promoted differentiation strongly and induced the expression of the associated genes, whereas decreasing the Ccn3 expression. These findings collectively indicate that CCN2 induces chondrocyte differentiation by regulating the expression of chondrocyte‐associated genes but that these effects are counteracted by CCN3. The lack of CCN2 caused upregulation of CCN3 in CCN2‐null mice, which resulted in the observed phenotypes, such as the resultant delay of terminal differentiation. The involvement of the PTHrP‐Ihh loop in the regulation of CCN3 expression is also suggested.


Nature Structural & Molecular Biology | 2010

Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways

Antonia M G van den Elzen; Julien Henri; Noureddine Lazar; María Eugenia Gas; D. Durand; François Lacroute; Magali Nicaise; Herman van Tilbeurgh; Bertrand Séraphin; Marc Graille

Eukaryotic cells have several quality control pathways that rely on translation to detect and degrade defective RNAs. Dom34 and Hbs1 are two proteins that are related to translation termination factors and are involved in no-go decay (NGD) and nonfunctional 18S ribosomal RNA (rRNA) decay (18S NRD) pathways that eliminate RNAs that cause strong ribosomal stalls. Here we present the structure of Hbs1 with and without GDP and a low-resolution model of the Dom34–Hbs1 complex. This complex mimics complexes of the elongation factor and transfer RNA or of the translation termination factors eRF1 and eRF3, supporting the idea that it binds to the ribosomal A-site. We show that nucleotide binding by Hbs1 is essential for NGD and 18S NRD. Mutations in Hbs1 that disrupted the interaction between Dom34 and Hbs1 strongly impaired NGD but had almost no effect on 18S NRD. Hence, NGD and 18S NRD could be genetically uncoupled, suggesting that mRNA and rRNA in a stalled translation complex may not always be degraded simultaneously.


Journal of Cellular Biochemistry | 2007

Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation.

Anne-Marie Bleau; Nathalie Planque; Noureddine Lazar; D. Zambelli; Alessandro Ori; Taihao Quan; Gary J. Fisher; K. Scotlandi; Bernard Perbal

Previous work had suggested that recombinant CCN3 was partially inhibiting cell proliferation. Here we show that native CCN3 protein secreted into the conditioned medium of glioma transfected cells indeed induces a reduction in cell proliferation. Large amounts of CCN3 are shown to accumulate both cytoplasmically and extracellularly as cells reach high density, therefore highlighting new aspects on how cell growth may be regulated by CCN proteins. Evidence is presented establishing that the amount of CCN3 secreted into cell culture medium is regulated by post‐translational proteolysis. As a consequence, the production of CCN3 varies throughout the cell cycle and CCN3 accumulates at the G2/M transition of the cycle. We also show that CCN3‐induced inhibition of cell growth can be partially reversed by specific antibodies raised against a C‐terminal peptide of CCN3. The use of several clones expressing various portions of CCN3 established that the CT module of CCN3 is sufficient to induce cell growth inhibition. J. Cell. Biochem. 101: 1475–1491, 2007.


Nucleic Acids Research | 2011

Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub’ protein

Dominique Liger; Liliana Mora; Noureddine Lazar; Sabine Figaro; Julien Henri; Nathalie Scrima; Richard H. Buckingham; Herman van Tilbeurgh; Valérie Heurgué-Hamard; Marc Graille

Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.


Cancer Research | 2008

CCN3/nephroblastoma overexpressed matricellular protein regulates integrin expression, adhesion, and dissemination in melanoma.

Viviana Vallacchi; Maria Daniotti; Francesca Ratti; Delia Di Stasi; Paola Deho; Annamaria De Filippo; Gabrina Tragni; Andrea Balsari; Antonino Carbone; Licia Rivoltini; Giorgio Parmiani; Noureddine Lazar; Bernard Perbal; Monica Rodolfo

CCN3/nephroblastoma overexpressed belongs to the CCN family of genes that encode secreted proteins associated with the extracellular matrix (ECM) and exert regulatory effects at the cellular level. Overexpression of CCN3 was shown in metastatic melanoma cells compared with cells of the primary tumor from the same patient. Analysis of short-term cultures from 50 primary and metastatic melanomas revealed a heterogeneous expression pattern of both the 46-kDa full-length cytoplasmic/secreted protein and the 32-kDa nuclear-truncated form. The different protein expression patterns were not associated with gene alterations or polymorphisms. Like the metastatic cells expressing high levels of the 46-kDa CCN3, cells transfected to overexpress CCN3 showed increased adhesion to ECM proteins, whereas inhibition of CCN3 expression by small interfering RNA decreased adhesion to laminin and vitronectin. CCN3 overexpression induced increased expression of laminin and vitronectin integrin receptors alpha 7 beta 1 and alpha v beta 5 by increasing their mRNA production. Moreover, CCN3 secreted by melanoma cells acted as an adhesion matrix protein for melanoma cells themselves. Analysis of CCN3 protein expression with respect to melanoma progression detected the protein in all visceral metastases tested and in most nodal metastases from relapsing patients but in only a few nodal metastases from nonrelapsing patients and cutaneous metastases. Consistently, xenotransplantation in immunodeficient mice showed a higher metastatic potential of melanoma cells overexpressing CCN3. Together, these data indicate a role for CCN3 in melanoma cell interaction with the ECM by regulating integrin expression, resulting in altered cell adhesion and leading melanoma progression to aggressive disease.


Bone | 2011

Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways

Harumi Kawaki; Satoshi Kubota; Akiko Suzuki; Makoto Suzuki; Kumiko Kohsaka; Kenji Hoshi; Toshiya Fujii; Noureddine Lazar; Toshihiro Ohgawara; Takeyasu Maeda; Bernard Perbal; Teruko Takano-Yamamoto; Masaharu Takigawa

CCN family proteins play diverse roles in many aspects of cellular processes such as proliferation, differentiation, adhesion, migration, angiogenesis and survival. In the bone tissue of vertebrate species, the expression of most CCN family members has been observed in osteoblasts. However, their spatial and temporal distributions, as well as their functions, are still only partially understood. In this study, we evaluated the localization of CCN family members in skeletal tissue in vivo and comparatively analyzed the gene expression patterns and functions of the members in murine osteoblasts in primary culture. Immunofluorescent analyses revealed that the CCN family members were differentially produced in osteoblasts and osteocytes. The presence of all Ccn transcripts was confirmed in those osteoblasts. Among the members, CCN1, CCN2, CCN4 and CCN5 were found in osteocytes. CCN4 and CCN5 were distributed in osteocytes located inside of bone matrix as well. Next, we investigated the expression pattern of Ccn family members during osteoblast differentiation. Along with differentiation, most of the members followed proper gene expression patterns; whereas, Ccn4 and Ccn5 showed quite similar patterns. Furthermore, we evaluated the effects of CCN family members on the osteoblastic activities by using recombinant CCN proteins and RNA interference method. Five members of this family displayed positive effects on osteoblast proliferation or differentiation. Of note, CCN3 drastically inhibited the osteoblast activities. Each Ccn specific siRNA could modulate osteoblast activities in a manner expected by the observed effect of respective recombinant CCN protein. In addition, we found that extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinase pathways were critically involved in the CCN family member-mediated modification of osteoblast activities. Collectively, all Ccn family members were found to be differentially expressed along with differentiation and therefore could participate in progression of the osteoblast lineage.


PLOS Genetics | 2013

A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

Jinane Ait Benkhali; Evelyne Coppin; Sylvain Brun; Leonardo Peraza-Reyes; Tom Martin; Christina Dixelius; Noureddine Lazar; Herman van Tilbeurgh; Robert Debuchy

High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi.


Journal of Cell Communication and Signaling | 2007

Domain-specific CCN3 antibodies as unique tools for structural and functional studies

Noureddine Lazar; Cristina Manara; Samuel Navarro; Anne-Marie Bleau; Antonio Llombart-Bosch; Katia Scotlandi; Nathalie Planque; Bernard Perbal

CCN3 is a member of the CCN family of cell growth and differentiation regulators that play key roles during embryonic development, and are associated with severe human pathologies. The level of CCN genes’ expression is of prognostic value in several types of tumors. In the present manuscript, we report the isolation and characterization of a new set of antibodies targeted against each individual module of the human CCN3 protein. The need for module-specific antibodies stemmed from recent reports indicating that the expression of truncated CCN variant proteins was associated with development of cancers. Each of the four CCN3 modules were expressed as GST fusion proteins and used for rabbits immunization. Polyclonal IgGs purified by two rounds of affinity–chromatography specifically detected both the individual CCN3 domains and the full length CCN3 protein expressed in mammalian cell lines and tissues, as well as recombinant full length and truncated CCN3 proteins. The purified module-specific antibodies were successfully used for Western blotting, immunoprecipitation, immunofluorescence and immunocytochemistry. These antibodies permitted the detection of CCN3 proteins under native and denaturing conditions, and confirmed the sublocalisation of CCN3 proteins in the extracellular compartment, at the cell membrane, in the cytoplasm and in the nucleus of positive cells. Immunocytochemistry and Western blotting studies performed with the module-specific antibodies identified truncated CCN3 proteins in kidney tumor samples. The detection of these rearranged variants provides clues for their involvement in tumorigenesis. Therefore, these antibodies constitute unique tools for the identification of truncated CCN3 proteins in human tissues and may be of great interest in molecular medicine.


Human Pathology | 2009

Prognostic relevance of CCN3 in Ewing sarcoma

Bernard Perbal; Noureddine Lazar; Diana Zambelli; José Antonio López-Guerrero; Antonio Llombart-Bosch; Katia Scotlandi; Piero Picci

Ewing sarcoma is a highly aggressive malignant bone tumor occurring preferentially in children and young adults. At present, only clinical features, such as patient age, presence of clinically evident metastases at diagnosis, and poor response to neoadjuvant chemotherapy, are widely accepted as prognostic indicators in Ewing sarcoma. In this study, we assessed the prognostic value of CCN3 (Nov), a matricellular protein that play crucial roles in bone formation. Polyclonal antibodies directed against each of the different CCN3 modules were used to identify variant CCN3 proteins in tumors and to draw potential relationships between the expression of these variants and the outcome of patients with Ewing sarcoma. Our results confirmed that expression of the full-length CCN3 in Ewing sarcoma is associated to a worse prognostic. Furthermore, we report a possible relationship between the expression of a CCN3 protein lacking an internal module (von Willebrand factor type C) and sensitivity to radiotherapy. We hypothesize that the increased level of variant CCN3 in the tumor cells reduces their tumorigenic potential and results in better outcome.


Virchows Archiv | 2008

Expression of CCN3 protein in human Wilms’ tumors: immunohistochemical detection of CCN3 variants using domain-specific antibodies

Manish Mani Subramaniam; Noureddine Lazar; Samuel Navarro; Bernard Perbal; Antonio Llombart-Bosch

We aimed to detect truncated CCN3 protein variants in formalin-fixed paraffin-embedded samples of eight Wilms’ tumors using anti-K19M and novel domain-specific antibodies, anti-NH2, anti-NH3, anti-NH4, and anti-NH5 raised against C-terminal (CT) domain and modules 1, 2, 3, and 4 of the CCN3 protein, respectively. In Wilms’ tumors, all the domain antibodies except anti-NH4 exhibited both nuclear and cytoplasmic staining in blastema as well as primitive tubules. NH4 was detected only in the cytoplasm of tumor cells. Normal fetal kidneys revealed mainly cytoplasmic immunoreactivity for all antibodies in tubules and glomeruli, except for K19 and NH5, which showed some nuclear staining. Our data suggest expression of a truncated nuclear CCN3 variant lacking the thrombospondin type-1-like domain and cytoplasmic full-length CCN3 protein in Wilms’ tumor cells. In addition, normal fetal kidneys express mainly full-length protein mostly localized to cytoplasm. Truncated CCN3 protein in Wilms’ tumor cells may provide evidence for its tumorigenic role in these tumors. Uniform NH5 staining compared to variable expression of K19M indicates that using NH5 is a better approach for detecting the CT domain of CCN3 protein in archival specimens. Thus, the domain-specific antibodies represent valuable tools for detecting CCN3 protein variants in normal and neoplastic kidneys.

Collaboration


Dive into the Noureddine Lazar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Durand

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Marc Graille

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Alexandra Irvine

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Lynn McCallum

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Wanhua Lu

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge