Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Noushin Ghaffari is active.

Publication


Featured researches published by Noushin Ghaffari.


BMC Bioinformatics | 2011

Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens

Ying Wang; Noushin Ghaffari; Charles D. Johnson; Ulisses Braga-Neto; Hui-Hui Wang; Rui-rui Chen; Huaijun Zhou

BackgroundRNA-Seq is the recently developed high-throughput sequencing technology for profiling the entire transcriptome in any organism. It has several major advantages over current hybridization-based approach such as microarrays. However, the cost per sample by RNA-Seq is still prohibitive for most laboratories. With continued improvement in sequence output, it would be cost-effective if multiple samples are multiplexed and sequenced in a single lane with sufficient transcriptome coverage. The objective of this analysis is to evaluate what sequencing depth might be sufficient to interrogate gene expression profiling in the chicken by RNA-Seq.ResultsTwo cDNA libraries from chicken lungs were sequenced initially, and 4.9 million (M) and 1.6 M (60 bp) reads were generated, respectively. With significant improvements in sequencing technology, two technical replicate cDNA libraries were re-sequenced. Totals of 29.6 M and 28.7 M (75 bp) reads were obtained with the two samples. More than 90% of annotated genes were detected in the data sets with 28.7-29.6 M reads, while only 68% of genes were detected in the data set with 1.6 M reads. The correlation coefficients of gene expression between technical replicates within the same sample were 0.9458 and 0.8442. To evaluate the appropriate depth needed for mRNA profiling, a random sampling method was used to generate different number of reads from each sample. There was a significant increase in correlation coefficients from a sequencing depth of 1.6 M to 10 M for all genes except highly abundant genes. No significant improvement was observed from the depth of 10 M to 20 M (75 bp) reads.ConclusionThe analysis from the current study demonstrated that 30 M (75 bp) reads is sufficient to detect all annotated genes in chicken lungs. Ten million (75 bp) reads could detect about 80% of annotated chicken genes, and RNA-Seq at this depth can serve as a replacement of microarray technology. Furthermore, the depth of sequencing had a significant impact on measuring gene expression of low abundant genes. Finally, the combination of experimental and simulation approaches is a powerful approach to address the relationship between the depth of sequencing and transcriptome coverage.


Scientific Reports | 2015

Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture

Noushin Ghaffari; Alejandro Sanchez-Flores; Ryan Doan; Karina D. Garcia-Orozco; Patricia L. Chen; Adrián Ochoa-Leyva; Alonso A. Lopez-Zavala; J. Salvador Carrasco; Chris Hong; Luis G. Brieba; Enrique Rudiño-Piñera; Philip D. Blood; J. E. Sawyer; Charles D. Johnson; Scott V. Dindot; Rogerio R. Sotelo-Mundo; Michael F. Criscitiello

We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.


BMC Genomics | 2012

Whole-Genome sequencing and genetic variant analysis of a quarter Horse mare

Ryan Doan; Noah D. Cohen; J. E. Sawyer; Noushin Ghaffari; Charles D. Johnson; Scott V. Dindot

BackgroundThe catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing.ResultsUsing massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horses genome was enriched in sensory perception, signal transduction, and immunity and defense pathways.ConclusionsThis is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.


BMC Systems Biology | 2009

Intervention in gene regulatory networks via greedy control policies based on long-run behavior.

Xiaoning Qian; Ivan Ivanov; Noushin Ghaffari; Edward R. Dougherty

BackgroundA salient purpose for studying gene regulatory networks is to derive intervention strategies, the goals being to identify potential drug targets and design gene-based therapeutic intervention. Optimal stochastic control based on the transition probability matrix of the underlying Markov chain has been studied extensively for probabilistic Boolean networks. Optimization is based on minimization of a cost function and a key goal of control is to reduce the steady-state probability mass of undesirable network states. Owing to computational complexity, it is difficult to apply optimal control for large networks.ResultsIn this paper, we propose three new greedy stationary control policies by directly investigating the effects on the network long-run behavior. Similar to the recently proposed mean-first-passage-time (MFPT) control policy, these policies do not depend on minimization of a cost function and avoid the computational burden of dynamic programming. They can be used to design stationary control policies that avoid the need for a user-defined cost function because they are based directly on long-run network behavior; they can be used as an alternative to dynamic programming algorithms when the latter are computationally prohibitive; and they can be used to predict the best control gene with reduced computational complexity, even when one is employing dynamic programming to derive the final control policy. We compare the performance of these three greedy control policies and the MFPT policy using randomly generated probabilistic Boolean networks and give a preliminary example for intervening in a mammalian cell cycle network.ConclusionThe newly proposed control policies have better performance in general than the MFPT policy and, as indicated by the results on the mammalian cell cycle network, they can potentially serve as future gene therapeutic intervention strategies.


Bioinformatics | 2010

A CoD-based reduction algorithm for designing stationary control policies on Boolean networks

Noushin Ghaffari; Ivan Ivanov; Xiaoning Qian; Edward R. Dougherty

MOTIVATION Gene regulatory networks serve as models from which to derive therapeutic intervention strategies, in particular, stationary control policies over time that shift the probability mass of the steady state distribution (SSD) away from states associated with undesirable phenotypes. Derivation of control policies is hindered by the high-dimensional state spaces associated with gene regulatory networks. Hence, network reduction is a fundamental issue for intervention. RESULTS The network model that has been most used for the study of intervention in gene regulatory networks is the probabilistic Boolean network (PBN), which is a collection of constituent Boolean networks (BNs) with perturbation. In this article, we propose an algorithm that reduces a BN with perturbation, designs a control policy on the reduced network and then induces that policy to the original network. The coefficient of determination (CoD) is used to choose a gene for deletion, and a reduction mapping is used to rewire the remaining genes. This CoD-reduction procedure is used to construct a reduced network, then either the previously proposed mean first-passage time (MFPT) or SSD stationary control policy is designed on the reduced network, and these policies are induced to the original network. The efficacy of the overall algorithm is demonstrated on networks of 10 genes or less, where it is possible to compare the steady state shifts of the induced and original policies (because the latter can be derived), and by applying it to a 17-gene gastrointestinal network where it is shown that there is substantial beneficial steady state shift. AVAILABILITY The code for the algorithms is available at: http://gsp.tamu.edu/Publications/supplementary/ghaffari10a/ Please Contact Noushin Ghaffari at [email protected] for further questions. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Bioinformatics | 2010

State reduction for network intervention in probabilistic Boolean networks

Xiaoning Qian; Noushin Ghaffari; Ivan Ivanov; Edward R. Dougherty

MOTIVATION A key goal of studying biological systems is to design therapeutic intervention strategies. Probabilistic Boolean networks (PBNs) constitute a mathematical model which enables modeling, predicting and intervening in their long-run behavior using Markov chain theory. The long-run dynamics of a PBN, as represented by its steady-state distribution (SSD), can guide the design of effective intervention strategies for the modeled systems. A major obstacle for its application is the large state space of the underlying Markov chain, which poses a serious computational challenge. Hence, it is critical to reduce the model complexity of PBNs for practical applications. RESULTS We propose a strategy to reduce the state space of the underlying Markov chain of a PBN based on a criterion that the reduction least distorts the proportional change of stationary masses for critical states, for instance, the network attractors. In comparison to previous reduction methods, we reduce the state space directly, without deleting genes. We then derive stationary control policies on the reduced network that can be naturally induced back to the original network. Computational experiments study the effects of the reduction on model complexity and the performance of designed control policies which is measured by the shift of stationary mass away from undesirable states, those associated with undesirable phenotypes. We consider randomly generated networks as well as a 17-gene gastrointestinal cancer network, which, if not reduced, has a 2(17) × 2(17) transition probability matrix. Such a dimension is too large for direct application of many previously proposed PBN intervention strategies.


IEEE Transactions on Signal Processing | 2010

Selection Policy-Induced Reduction Mappings for Boolean Networks

Ivan Ivanov; Plamen Simeonov; Noushin Ghaffari; Xiaoning Qian; Edward R. Dougherty

Developing computational models paves the way to understanding, predicting, and influencing the long-term behavior of genomic regulatory systems. However, several major challenges have to be addressed before such models are successfully applied in practice. Their inherent high complexity requires strategies for complexity reduction. Reducing the complexity of the model by removing genes and interpreting them as latent variables leads to the problem of selecting which states and their corresponding transitions best account for the presence of such latent variables. We use the Boolean network (BN) model to develop the general framework for selection and reduction of the models complexity via designating some of the models variables as latent ones. We also study the effects of the selection policies on the steady-state distribution and the controllability of the model.


BMC Bioinformatics | 2013

Modeling the next generation sequencing sample processing pipeline for the purposes of classification

Noushin Ghaffari; Mohammadmahdi R. Yousefi; Charles D. Johnson; Ivan Ivanov; Edward R. Dougherty

BackgroundA key goal of systems biology and translational genomics is to utilize high-throughput measurements of cellular states to develop expression-based classifiers for discriminating among different phenotypes. Recent developments of Next Generation Sequencing (NGS) technologies can facilitate classifier design by providing expression measurements for tens of thousands of genes simultaneously via the abundance of their mRNA transcripts. Because NGS technologies result in a nonlinear transformation of the actual expression distributions, their application can result in data that are less discriminative than would be the actual expression levels themselves, were they directly observable.ResultsUsing state-of-the-art distributional modeling for the NGS processing pipeline, this paper studies how that pipeline, via the resulting nonlinear transformation, affects classification and feature selection. The effects of different factors are considered and NGS-based classification is compared to SAGE-based classification and classification directly on the raw expression data, which is represented by a very high-dimensional model previously developed for gene expression. As expected, the nonlinear transformation resulting from NGS processing diminishes classification accuracy; however, owing to a larger number of reads, NGS-based classification outperforms SAGE-based classification.ConclusionsHaving high numbers of reads can mitigate the degradation in classification performance resulting from the effects of NGS technologies. Hence, when performing a RNA-Seq analysis, using the highest possible coverage of the genome is recommended for the purposes of classification.


BMC Genomics | 2008

Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning

Cole Harris; Noushin Ghaffari

The growing body of DNA microarray data has the potential to advance our understanding of the molecular basis of disease. However annotating microarray datasets with clinically useful information is not always possible, as this often requires access to detailed patient records. In this study we introduce GLAD, a new Semi-Supervised Learning (SSL) method for combining independent annotated datasets and unannotated datasets with the aim of identifying more robust sample classifiers.In our method, independent models are developed using subsets of genes for the annotated and unannotated datasets. These models are evaluated according to a scoring function that incorporates terms for classification accuracy on annotated data, and relative cluster separation in unannotated data. Improved models are iteratively generated using a genetic algorithm feature selection technique.Our results show that the addition of unannotated data into training, significantly improves classifier robustness.


BMC Genomics | 2016

A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction

Maria F. Torres; Noushin Ghaffari; Ester Buiate; Neil Moore; Scott Schwartz; Charles D. Johnson; Lisa J. Vaillancourt

BackgroundColletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A “Mixed Effects” Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy.ResultsMore than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients.ConclusionsThis approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as ‘landmarks’ to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.

Collaboration


Dive into the Noushin Ghaffari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip D. Blood

Pittsburgh Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar

Jordi Abante

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge