Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuno M. Reis is active.

Publication


Featured researches published by Nuno M. Reis.


Biosensors and Bioelectronics | 2015

Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device

Ana I. Barbosa; Poonam Gehlot; Kalpita Sidapra; Alexander D. Edwards; Nuno M. Reis

We present a new, power-free and flexible detection system named MCFphone for portable colorimetric and fluorescence quantitative sandwich immunoassay detection of prostate specific antigen (PSA). The MCFphone is composed by a smartphone integrated with a magnifying lens, a simple light source and a miniaturised immunoassay platform, the Microcapillary Film (MCF). The excellent transparency and flat geometry of fluoropolymer MCF allowed quantitation of PSA in the range 0.9 to 60 ng/ml with<7% precision in 13 min using enzymatic amplification and a chromogenic substrate. The lower limit of detection was further improved from 0.4 to 0.08 ng/ml in whole blood samples with the use of a fluorescence substrate. The MCFphone has shown capable of performing rapid (13 to 22 min total assay time) colorimetric quantitative and highly sensitive fluorescence tests with good %Recovery, which represents a major step in the integration of a new generation of inexpensive and portable microfluidic devices with commercial immunoassay reagents and off-the-shelf smartphone technology.


Lab on a Chip | 2011

The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream

Frederik Scheiff; Matthias Mendorf; David W. Agar; Nuno M. Reis; Malcolm R. Mackley

This paper describes experiments and related modelling on a new method for separating aqueous phase slugs from the surrounding organic matrix phase in segmented two phase flow in a plastic microcapillary film (MCF). Kerosene or paraffin oil was metered through a plastic capillary of 630 microns diameter and aqueous phase slugs were generated within the capillary by the continuous sidestream injection of water. It was found that the resulting aqueous phase slugs formed in the MCF could be subsequently easily separated from the organic phase by piercing the downstream sidewall of the plastic capillary with a hydrophilic metal hypodermic needle to draw off an aqueous sidestream. Optical scrutiny of the phase separation process indicated that two distinct disengagement mechanisms are involved, in which the metal needle tip either remains submerged in the aqueous phase or becomes periodically exposed to the organic phase at certain stages of the segregation process. The separation efficiency, i.e. the degree of residual phase cross-contamination, was determined as a function of both the sidestream needle angle and the depth of needle penetration into the capillary for a given flow rate and phase ratio. It was established that the separation efficiency was very sensitive to the downstream pressure balance between the organic mainstream flow in the plastic capillary and the aqueous sidestream flow through the needle. A mathematical model for the pressure balance conditions was developed by making certain simplifying assumptions and taking the Laplace interfacial pressure into account. The model predictions agreed surprisingly well with the experimental findings, thus providing circumstantial evidence for the validity of the insights into the phase separation mechanism.


Lab on a Chip | 2011

A simple device for multiplex ELISA made from melt-extruded plastic microcapillary film

Alexander D. Edwards; Nuno M. Reis; Nigel K.H. Slater; Malcolm R. Mackley

We present a simple device for multiplex quantitative enzyme-linked immunosorbant assays (ELISA) made from a novel melt-extruded microcapillary film (MCF) containing a parallel array of 200 μm capillaries along its length. To make ELISA devices different protein antigens or antibodies were immobilised inside individual microcapillaries within long reels of MCF extruded from fluorinated ethylene propylene (FEP). Short pieces of coated film were cut and interfaced with a pipette, allowing sequential uptake of samples and detection solutions into all capillaries from a reagent well. As well as being simple to produce, these FEP MCF devices have excellent light transmittance allowing direct optical interrogation of the capillaries for simple signal quantification. Proof of concept experiments demonstrate both quantitative and multiplex assays in FEP MCF devices using a standard direct ELISA procedure and read using a flatbed scanner. This new multiplex immunoassay platform should find applications ranging from lab detection to point-of-care and field diagnostics.


Journal of Chromatography A | 2011

Fast cation-exchange separation of proteins in a plastic microcapillary disc

Nicholas J. Darton; Nuno M. Reis; Malcolm R. Mackley; Nigel K.H. Slater

A novel disposable adsorbent material for fast cation-exchange separation of proteins was developed based on plastic microcapillary films (MCFs). A MCF containing 19 parallel microcapillaries, each with a mean internal diameter of 142 μm, was prepared using a melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH). The MCF was surface functionalized to produce a cation-exchange adsorbent (herein referred as MCF-EVOH-SP). The dynamic binding capacity of the new MCF-EVOH-SP material was experimentally determined by frontal analysis using pure protein solutions in a standard liquid chromatography instrument for a range of superficial flow velocities, u(LS)=5.5-27.7 cm s⁻¹. The mean dynamic binding capacity for hen-egg lysozyme was found to be approximately 100 μg for a 5 m length film, giving a ligand binding density of 413 ng cm⁻². The dynamic binding capacity did not vary significantly over the range of u(LS) tested. The application of this novel material to subtractive chromatography was demonstrated for anionic BSA and cationic lysozyme at pH 7.2. The chromatographic separation of two cationic proteins, lysozyme and cytochrome-c, was also performed with a view to applying this technology to the analysis or purification of proteins. Future applications might include separation based on anion exchange and other modes of adsorption.


Journal of Hazardous Materials | 2016

Removal of benzoylecgonine from water matrices through UV254/H2O2 process: Reaction kinetic modeling, ecotoxicity and genotoxicity assessment.

Danilo Spasiano; Danilo Russo; Marianna Vaccaro; Antonietta Siciliano; Raffaele Marotta; Marco Guida; Nuno M. Reis; G. Li Puma; Roberto Andreozzi

Benzoylecgonine (BE), the main cocaine metabolite, has been detected in numerous surface water and treatment plants effluents in Europe and there is urgent need for effective treatment methods. In this study, the removal of BE by the UV254/H2O2 process from different water matrices was investigated. By means of competition kinetics method, the kinetic constant of reaction between BE and the photogenerated hydroxyl radicals (OH) was estimated resulting in kOH/BE=5.13×10(9)M(-1)s(-1). By-products and water matrices scavengers effects were estimated by numerical modeling of the reaction kinetics for the UV254/H2O2 process and validated in an innovative microcapillary film (MCF) array photoreactor and in a conventional batch photoreactor. The ecotoxicity of the water before and after treatment was evaluated with four organisms Raphidocelis subcapitata, Daphnia magna, Caenorhabditis elegans, and Vicia faba. The results provided evidence that BE and its transformation by-products do not have significant adverse effects on R. subcapitata, while D. magna underwent an increase of lipid droplets. C. elegans was the most sensitive to BE and its by-products. Furthermore, a genotoxicity assay, using V. faba, showed cytogenic damages during the cell mitosis of primary roots.


Biotechnology and Bioengineering | 2016

Photo inactivation of virus particles in microfluidic capillary systems.

Yudan Ren; Colin M. Crump; Malcolm M. Mackley; Gianluca Li Puma; Nuno M. Reis

It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is tuned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light, resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type‐1 (HSV‐1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high‐throughput MicroCapillary Film with mean hydraulic diameter of 206 μm. Up to 99.96% of HSV‐1 virus particles were effectively inactivated with a mean exposure time of up to 10 s, with undetectable collateral damage to solution proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non‐invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules. Biotechnol. Bioeng. 2016;113: 1481–1492.


Journal of Hazardous Materials | 2018

Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment

Danilo Russo; Antonietta Siciliano; Marco Guida; Roberto Andreozzi; Nuno M. Reis; Gianluca Li Puma; Raffaele Marotta

The concentration of antiretroviral drugs in wastewater treatment plants (WWTP) effluents and surface waters of many countries has increased significantly due to their widespread use for HIV treatment. In this study, the removal of stavudine and zidovudine under UV254 photolysis or UV254/H2O2 was investigated in a microcapillary film (MCF) photoreactor, using minimal water samples quantities. The UV254 quantum yield of zidovudine, (2.357 ± 0.0589)·10-2 mol ein-1 (pH 4.0-8.0), was 28-fold higher that the yield of stavudine (8.34 ± 0.334)·10-4 mol ein-1 (pH 6.0-8.0). The second-order rate constant kOH,iof reaction of hydroxyl radical with the antiretrovirals (UV254/H2O2 process) were determined by kinetics modeling: (9.98 ± 0.68)·108 M-1 s-1 (pH 4.0-8.0) for zidovudine and (2.03 ± 0.18)·109 M-1 s-1 (pH 6.0-8.0) for stavudine. A battery of ecotoxicological tests (i.e. inhibition growth, bioluminescence, mutagenic and genotoxic activity) using bacteria (Aliivibrio fischeri, Salmonella typhimurium), crustacean (Daphnia magna) and algae (Raphidocelis subcapitata) revealed a marked influence of the UV dose on the ecotoxicological activity. The UV254/H2O2 treatment process reduced the ecotoxicological risk associated to direct photolysis of the antiretrovirals aqueous solutions, but required significantly higher UV254 doses (≥2000 mJ cm-2) in comparison to common water UV disinfection processes.


ACS Sustainable Chemistry & Engineering | 2013

Through-wall mass transport as a modality for safe generation of singlet oxygen in continuous flows

Katherine S. Elvira; Robert C. R. Wootton; Nuno M. Reis; Malcolm R. Mackley; Andrew J. deMello


Lab on a Chip | 2014

A lab-in-a-briefcase for rapid prostate specific antigen (PSA) screening from whole blood.

Ana I. Barbosa; Ana P. Castanheira; Alexander D. Edwards; Nuno M. Reis


Chemical Communications | 2015

A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films

Nuno M. Reis; G. Li Puma

Collaboration


Dive into the Nuno M. Reis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raffaele Marotta

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberto Andreozzi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonietta Siciliano

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge