Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuria Tubau-Juni is active.

Publication


Featured researches published by Nuria Tubau-Juni.


Journal of Immunology | 2017

NLRX1 Regulates Effector and Metabolic Functions of CD4+ T Cells

Andrew Leber; Raquel Hontecillas; Nuria Tubau-Juni; Victoria Zoccoli-Rodriguez; Matthew W. Hulver; Ryan P. McMillan; Kristin Eden; Irving C. Allen; Josep Bassaganya-Riera

Nucleotide oligomerization domain–like receptor X1 (NLRX1) has been implicated in viral response, cancer progression, and inflammatory disorders; however, its role as a dual modulator of CD4+ T cell function and metabolism has not been defined. The loss of NLRX1 results in increased disease severity, populations of Th1 and Th17 cells, and inflammatory markers (IFN-γ, TNF-α, and IL-17) in mice with dextran sodium sulfate–induced colitis. To further characterize this phenotype, we used in vitro CD4+ T cell–differentiation assays and show that NLRX1-deficient T cells have a greater ability to differentiate into an inflammatory phenotype and possess greater proliferation rates. Further, NLRX1−/− cells have a decreased responsiveness to immune checkpoint pathways and greater rates of lactate dehydrogenase activity. When metabolic effects of the knockout are impaired, NLRX1-deficient cells do not display significant differences in differentiation or proliferation. To confirm the role of NLRX1 specifically in T cells, we used an adoptive-transfer model of colitis. Rag2−/− mice receiving NLRX1−/− naive or effector T cells experienced increased disease activity and effector T cell populations, whereas no differences were observed between groups receiving wild-type or NLRX1−/− regulatory T cells. Metabolic effects of NLRX1 deficiency are observed in a CD4-specific knockout of NLRX1 within a Citrobacter rodentium model of colitis. The aerobic glycolytic preference in NLRX1−/− effector T cells is combined with a decreased sensitivity to immunosuppressive checkpoint pathways to provide greater proliferative capabilities and an inflammatory phenotype bias leading to increased disease severity.


Artificial Intelligence in Medicine | 2017

Modeling new immunoregulatory therapeutics as antimicrobial alternatives for treating Clostridium difficile infection

Andrew Leber; Raquel Hontecillas; Vida Abedi; Nuria Tubau-Juni; Victoria Zoccoli-Rodriguez; Caroline Stewart; Josep Bassaganya-Riera

The current treatment paradigm in Clostridium difficile infection is the administration of antibiotics contributing to the high rates of recurrent infections. Recent alternative strategies, such as fecal microbiome transplantation and anti-toxin antibodies, have shown similar efficacy in the treatment of C. difficile associated disease (CDAD). However, barriers exist for either treatment or other novel treatments to displace antibiotics as the standard of care. To aid in the comparison of these and future treatments in CDAD, we developed an in silico pipeline to predict clinical efficacy with nonclinical results. The pipeline combines an ordinary differential equation (ODE)-based model, describing the immunological and microbial interactions in the gastrointestinal (GI) mucosa, with machine learning algorithms to translate simulated output quantities (i.e. time of clearance, quantity of commensal bacteria, T cell ratios) into clinical predictions based on prior preclinical, translational and clinical trial data. As a use case, we compare the efficacy of lanthionine synthetase C-like 2 (LANCL2), a novel immunoregulatory target with promising efficacy in inflammatory bowel disease (IBD), activation with antibiotics, fecal microbiome transplantation and anti-toxin antibodies in the treatment of CDAD. We further validate the potential of LANCL2 pathway activation, in a mouse model of C. difficile infection in which it displays an ability to decrease weight loss and inflammatory cell types while protecting against mortality. The computational pipeline can serve as an important resource in the development of new treatment modalities.


PLOS ONE | 2016

Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection

Andrew B. Leber; Josep Bassaganya-Riera; Nuria Tubau-Juni; Victoria Zoccoli-Rodriguez; Monica Viladomiu; Vida Abedi; Pinyi Lu; Raquel Hontecillas; Mohammed Soutto

Immune responses to Helicobacter pylori are orchestrated through complex balances of host-bacterial interactions, including inflammatory and regulatory immune responses across scales that can lead to the development of the gastric disease or the promotion of beneficial systemic effects. While inflammation in response to the bacterium has been reasonably characterized, the regulatory pathways that contribute to preventing inflammatory events during H. pylori infection are incompletely understood. To aid in this effort, we have generated a computational model incorporating recent developments in the understanding of H. pylori-host interactions. Sensitivity analysis of this model reveals that a regulatory macrophage population is critical in maintaining high H. pylori colonization without the generation of an inflammatory response. To address how this myeloid cell subset arises, we developed a second model describing an intracellular signaling network for the differentiation of macrophages. Modeling studies predicted that LANCL2 is a central regulator of inflammatory and effector pathways and its activation promotes regulatory responses characterized by IL-10 production while suppressing effector responses. The predicted impairment of regulatory macrophage differentiation by the loss of LANCL2 was simulated based on multiscale linkages between the tissue-level gastric mucosa and the intracellular models. The simulated deletion of LANCL2 resulted in a greater clearance of H. pylori, but also greater IFNγ responses and damage to the epithelium. The model predictions were validated within a mouse model of H. pylori colonization in wild-type (WT), LANCL2 whole body KO and myeloid-specific LANCL2-/- (LANCL2Myeloid) mice, which displayed similar decreases in H. pylori burden, CX3CR1+ IL-10-producing macrophages, and type 1 regulatory (Tr1) T cells. This study shows the importance of LANCL2 in the induction of regulatory responses in macrophages and T cells during H. pylori infection.


Frontiers in Nutrition | 2016

Modeling-Enabled Systems Nutritional Immunology

Meghna Verma; Raquel Hontecillas; Vida Abedi; Andrew Leber; Nuria Tubau-Juni; Casandra Philipson; Adria Carbo; Josep Bassaganya-Riera

This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.


Frontiers in Nutrition | 2017

Abscisic Acid: A Novel Nutraceutical for Glycemic Control

Elena Zocchi; Raquel Hontecillas; Andrew B. Leber; Alexandra Einerhand; Adria Carbo; Santina Bruzzone; Nuria Tubau-Juni; Noah Philipson; Victoria Zoccoli-Rodriguez; Laura Sturla; Josep Bassaganya-Riera

Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.


Journal of Immunology | 2017

Cooperation of Gastric Mononuclear Phagocytes with Helicobacter pylori during Colonization

Monica Viladomiu; Josep Bassaganya-Riera; Nuria Tubau-Juni; Barbara Kronsteiner; Andrew Leber; Casandra W. Philipson; Victoria Zoccoli-Rodriguez; Raquel Hontecillas

Helicobacter pylori, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11b+F4/80hiCD64+CX3CR1+ macrophages in the gastric lamina propria. Depletion of phagocytic cells by clodronate liposomes in wild-type mice resulted in a reduction of gastric H. pylori colonization compared with nontreated mice. PPARγ-deficient and macrophage-depleted mice presented decreased IL-10–mediated myeloid and T cell regulatory responses soon after infection. IL-10 neutralization during H. pylori infection led to increased IL-17–mediated responses and increased neutrophil accumulation at the gastric mucosa. In conclusion, we report the induction of IL-10–driven regulatory responses mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes that contribute to maintaining high levels of H. pylori loads in the stomach by modulating effector T cell responses at the gastric mucosa.


Current Opinion in Gastroenterology | 2016

Translating nutritional immunology into drug development for inflammatory bowel disease.

Andrew Leber; Raquel Hontecillas; Nuria Tubau-Juni; Josep Bassaganya-Riera

Purpose of review To highlight recent advances in the understanding of nutritional immunology and in the development of novel therapeutics for inflammatory bowel disease (IBD). Recent findings We highlight the variety of factors that contribute to the interaction of the immune system and nutrition including the microbiome and the nervous system stimulation of the gut. We describe the potential for therapeutic development in IBD. Further, we review the cellular metabolic effects on immune activation and promising therapeutic targets. Finally, we show how the progression of understanding the role of lanthionine synthetase C-like 2 has encompassed both nutritional and therapeutic advances and led to the development of novel oral small molecule therapeutics for IBD. Summary Nutritional immunology and drug development research centered around immunoregulatory pathways can provide safer and more effective drugs while accelerating the path to cures.


Frontiers in Immunology | 2018

NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host–Gut Microbiota Interactions during Inflammatory Bowel Disease

Andrew Leber; Raquel Hontecillas; Nuria Tubau-Juni; Victoria Zoccoli-Rodriguez; Vida Abedi; Josep Bassaganya-Riera

Interactions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). Nlrx1−/− mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic Nlrx1−/− mice compared to wild-type (WT) mice. Cell-specificity studies using cre-lox mice demonstrate that the loss of NLRX1 in intestinal epithelial cells (IEC) recapitulate the increased sensitivity to DSS colitis observed in whole body Nlrx1−/− mice. Further, organoid cultures of Nlrx1−/− and WT epithelial cells confirm the altered patterns of proliferation, amino acid metabolism, and tight junction expression. These differences in IEC behavior can impact the composition of the microbiome. Microbiome analyses demonstrate that colitogenic bacterial taxa such as Veillonella and Clostridiales are increased in abundance in Nlrx1−/− mice and in WT mice co-housed with Nlrx1−/− mice. The transfer of an Nlrx1−/−-associated gut microbiome through co-housing worsens disease in WT mice confirming the contributions of the microbiome to the Nlrx1−/− phenotype. To validate NLRX1 effects on IEC metabolism mediate gut–microbiome interactions, restoration of WT glutamine metabolic profiles through either exogenous glutamine supplementation or administration of 6-diazo-5-oxo-l-norleucine abrogates differences in inflammation, microbiome, and overall disease severity in Nlrx1−/− mice. The influence NLRX1 deficiency on SIRT1-mediated effects is identified to be an upstream controller of the Nlrx1−/− phenotype in intestinal epithelial cell function and metabolism. The altered IEC function and metabolisms leads to changes in barrier permeability and microbiome interactions, in turn, promoting greater translocation and inflammation and resulting in an increased disease severity. In conclusion, NLRX1 is an immunoregulatory molecule and a candidate modulator of the interplay between mucosal inflammation, metabolism, and the gut microbiome during IBD.


Scientific Reports | 2017

Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis

Shiv D. Kale; Tariq Ayubi; Dawoon Chung; Nuria Tubau-Juni; Andrew Leber; Ha X. Dang; Saikumar Karyala; Raquel Hontecillas; Christopher B. Lawrence; Robert A. Cramer; Josep Bassaganya-Riera

Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.


Frontiers in Immunology | 2017

Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection

Andrew Leber; Josep Bassaganya-Riera; Nuria Tubau-Juni; Victoria Zoccoli-Rodriguez; Pinyi Lu; Victoria Godfrey; Shiv D. Kale; Raquel Hontecillas

Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs.

Collaboration


Dive into the Nuria Tubau-Juni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge