Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nurten Yigit is active.

Publication


Featured researches published by Nurten Yigit.


Genome Biology | 2006

Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes.

Katleen De Preter; Jo Vandesompele; Pierre Heimann; Nurten Yigit; Siv Beckman; Alexander Schramm; Angelika Eggert; Raymond L. Stallings; Yves Benoit; Marleen Renard; Anne De Paepe; Genevieve Laureys; Sven Påhlman; Franki Speleman

BackgroundNeuroblastoma tumor cells are assumed to originate from primitive neuroblasts giving rise to the sympathetic nervous system. Because these precursor cells are not detectable in postnatal life, their transcription profile has remained inaccessible for comparative data mining strategies in neuroblastoma. This study provides the first genome-wide mRNA expression profile of these human fetal sympathetic neuroblasts. To this purpose, small islets of normal neuroblasts were isolated by laser microdissection from human fetal adrenal glands.ResultsExpression of catecholamine metabolism genes, and neuronal and neuroendocrine markers in the neuroblasts indicated that the proper cells were microdissected. The similarities in expression profile between normal neuroblasts and malignant neuroblastomas provided strong evidence for the neuroblast origin hypothesis of neuroblastoma. Next, supervised feature selection was used to identify the genes that are differentially expressed in normal neuroblasts versus neuroblastoma tumors. This approach efficiently sifted out genes previously reported in neuroblastoma expression profiling studies; most importantly, it also highlighted a series of genes and pathways previously not mentioned in neuroblastoma biology but that were assumed to be involved in neuroblastoma pathogenesis.ConclusionThis unique dataset adds power to ongoing and future gene expression studies in neuroblastoma and will facilitate the identification of molecular targets for novel therapies. In addition, this neuroblast transcriptome resource could prove useful for the further study of human sympathoadrenal biogenesis.


Cancer Research | 2006

Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma.

Tom Van Maerken; Frank Speleman; Joëlle Vermeulen; Irina Lambertz; Sarah De Clercq; Els De Smet; Nurten Yigit; Vicky Coppens; Jan Philippé; Anne De Paepe; Jean-Christophe Marine; Jo Vandesompele

Circumvention of the p53 tumor suppressor barrier in neuroblastoma is rarely caused by TP53 mutation but might arise from inappropriately increased activity of its principal negative regulator MDM2. We show here that targeted disruption of the p53-MDM2 interaction by the small-molecule MDM2 antagonist nutlin-3 stabilizes p53 and selectively activates the p53 pathway in neuroblastoma cells with wild-type p53, resulting in a pronounced antiproliferative and cytotoxic effect through induction of G(1) cell cycle arrest and apoptosis. A nutlin-3 response was observed regardless of MYCN amplification status. Remarkably, surviving SK-N-SH cells adopted a senescence-like phenotype, whereas CLB-GA and NGP cells underwent neuronal differentiation. p53 dependence of these alternative outcomes of nutlin-3 treatment was evidenced by abrogation of the effects when p53 was knocked down by lentiviral-mediated short hairpin RNA interference. The diversity of cellular responses reveals pleiotropic mechanisms of nutlins to disable neuroblastoma cells and exemplifies the feasibility of exploiting, by a single targeted intervention, the multiplicity of anticancer activities exerted by a key tumor suppressor as p53. The observed treatment effects without the need of imposing a genotoxic burden suggest that selective MDM2 antagonists might be beneficial for treatment of neuroblastoma patients with and without MYCN amplification.


Journal of the National Cancer Institute | 2009

Antitumor Activity of the Selective MDM2 Antagonist Nutlin-3 Against Chemoresistant Neuroblastoma With Wild-Type p53

Tom Van Maerken; Liesbeth Ferdinande; Jasmien Taildeman; Irina Lambertz; Nurten Yigit; Liesbeth Vercruysse; Ali Rihani; Martin Michaelis; Jindrich Cinatl; Claude Cuvelier; Jean-Christophe Marine; Anne De Paepe; Marc Bracke; Frank Speleman; Jo Vandesompele

BACKGROUND Restoring p53 function by antagonizing its interaction with the negative regulator MDM2 is an appealing nongenotoxic approach to treating tumors with wild-type p53. Mutational inactivation of p53 is rare in neuroblastoma tumors at diagnosis and occurs in only a subset of multidrug-resistant neuroblastomas. METHODS The antiproliferative and cytotoxic effect of nutlin-3, a small-molecule MDM2 antagonist, was examined in chemosensitive (UKF-NB-3) and matched chemoresistant neuroblastoma cells with wild-type p53 (UKF-NB-3(r)DOX20) or with mutant p53 (UKF-NB-3(r)VCR10). Activation of the p53 pathway was assessed by expression analysis of p53 target genes, flow cytometric cell cycle analysis, and apoptosis assays. Mice with established chemoresistant tumor xenografts were treated orally with nutlin-3 or vehicle control (n = 5-10 mice per group) and were used to evaluate effects on tumor growth, p53 pathway activity, and metastatic tumor burden. All statistical tests were two-sided. RESULTS Nutlin-3 induced a similar activation of the p53 pathway in UKF-NB-3 and UKF-NB-3(r)DOX20 cells, as evidenced by increased expression of p53 target genes, G1 cell cycle arrest, and induction of apoptosis. No such response was observed in UKF-NB-3(r)VCR10 cells with mutant p53. Oral administration of nutlin-3 to UKF-NB-3(r)DOX20 xenograft-bearing mice led to inhibition of primary tumor growth (mean tumor volume after 3 weeks of treatment, nutlin-3- vs vehicle-treated mice: 772 vs 1661 mm3, difference = 890 mm3, 95% confidence interval = 469 to 1311 mm3, P < .001), p53 pathway activation, and reduction in the extent of metastatic disease. The growth of UKF-NB-3(r)VCR10 xenografts was unaffected by nutlin-3. CONCLUSIONS Nutlin-3 activates the p53 pathway and suppresses tumor growth in this model system of chemoresistant neuroblastoma, provided that wild-type p53 is present.


Laboratory Investigation | 2005

Rapid detection of VHL exon deletions using real-time quantitative PCR

Jasmien Hoebeeck; Rob B. van der Luijt; Bruce Poppe; Els De Smet; Nurten Yigit; Kathleen Claes; Richard Zewald; Gert-Jan de Jong; Anne De Paepe; Frank Speleman; Jo Vandesompele

Various types of mutations exist that exert an effect on the normal function of a gene. Among these, exon/gene deletions often remain unnoticed in initial mutation screening. Until recently, no fast and efficient methods were available to detect this type of mutation. Molecular detection methods for gene copy number changes included Southern blot (SB) and fluorescence in situ hybridisation, both with their own intrinsic limitations. In this paper, we report the development and application of a fast, sensitive and high-resolution method for the detection of single exon or larger deletions in the VHL gene based on real-time quantitative PCR (Q-PCR). These deletions account for approximately one-fifth of all patients with the von Hippel–Lindau syndrome, a dominantly inherited highly penetrant familial cancer syndrome predisposing to specific malignancies including phaeochromocytomas and haemangioblastomas. Our VHL exon quantification strategy is based on SYBR Green I detection and normalisation using two reference genes with a normal copy number, that is, ZNF80 (3q13.31) and GPR15 (3q12.1). Choice of primer sequences and the use of two reference genes appears to be critical for accurate discrimination between 1 and 2 exon copies. In a blind Q-PCR study of 29 samples, all 14 deletions were detected, which is in perfect agreement with previously determined SB results. We propose Q-PCR as the method of choice for fast (within 3.5 h), accurate and sensitive (ng amount of input DNA) exon deletion screening in routine DNA diagnosis of VHL disease. Similar assays can be designed for deletion screening in other genetic disorders.


Genes, Chromosomes and Cancer | 2005

PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements

Bruce Poppe; Lucienne Michaux; P De Paepe; Nicole Dastugue; Christian Bastard; Christian Herens; E Moreau; F Cavazzini; Nurten Yigit; H Van Limbergen; A. De Paepe; Marleen Praet; C. De Wolf-Peeters; L. Wlodarska; Franki Speleman

We present an extensive characterization of 10 B‐cell lymphomas with a t(9;14)(p13;q32). The presence of the PAX5/IGH gene rearrangement was demonstrated by fluorescence in situ hybridization (FISH) using a validated probe set, whereas complex karyotypic changes were reassessed by multiplex‐FISH (M‐FISH). Pathologic and clinical review revealed the presence of this rearrangement in 4 histiocyte‐rich, T‐cell‐rich B‐cell lymphomas (HRTR‐BCLs) and 2 posttransplantation diffuse large B‐cell lymphomas (PTLD‐DLBCLs). In contrast to initial observations describing this translocation in lymphoplasmacytic lymphoma (LPL) and LPL‐derived large B‐cell lymphoma, our data showed a wide morphologic and clinical spectrum associated with the PAX5/IGH rearrangement, pointing to an association between this aberration and a subset of de novo DLBCLs presenting with advanced disease and adverse prognosis. In addition, the recurrent incidence of this rearrangement in both HRTR‐BCL (4 cases) and PTLD‐DLBCL (2 cases) was previously unrecognized and is intriguing.


Genes, Chromosomes and Cancer | 2006

EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements.

Bruce Poppe; Nicole Dastugue; Jo Vandesompele; Barbara Cauwelier; Betty De Smet; Nurten Yigit; Anne De Paepe; José Cervera; Christian Recher; Véronique De Mas; Anne Hagemeijer; Frank Speleman

In contrast to the well‐documented involvement of EVI1 in various 3q26 aberrations, the transcriptional status of EVI1 in rare recurrent or sporadic 3q26 chromosomal defects has remained largely unexplored. Moreover, in a recent report, the association between 3q26 alterations in myeloid proliferations and ectopic EVI1 expression was questioned. Therefore, we performed a detailed physical mapping of 3q26 breakpoints using a 1.3‐Mb tiling path BAC contig covering the EVI1 locus and a carefully designed quantification of both EVI1 and MDS/EVI1 transcripts in 30 hematological malignancies displaying 3q26 aberrations. Cases included well‐known rare, recurring chromosomal aberrations such as t(3;17)(q26;q22), t(2;3)(p21–22;q26), and t(3;6)(q26;q25), as well as 10 new sporadic cases. Extensive 3q26 breakpoint mapping allowed unequivocal and sensitive FISH detection of EVI1 rearrangements on both metaphases and interphase nuclei. Real‐time quantitative PCR analyses indicated that typically both MDS1/EVI1 and EVI1, but not MDS1, were expressed in these malignancies, with EVI1 the primary transcript. In conclusion, we have demonstrated EVI1 involvement in numerous novel sporadic and recurrent 3q26 rearrangements. Our results underscore the feasibility of FISH as an adjunct to PCR for the identification of EVI1 deranged leukemias and identified EVI1 as the principal transcript expressed in these malignancies.


Cancer Letters | 2009

Aberrant methylation of candidate tumor suppressor genes in neuroblastoma

Jasmien Hoebeeck; Evi Michels; Filip Pattyn; Valérie Combaret; Joëlle Vermeulen; Nurten Yigit; Claire Hoyoux; Genevieve Laureys; Anne De Paepe; Franki Speleman; Jo Vandesompele

CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers.


Molecular Cancer Therapeutics | 2011

Functional Analysis of the p53 Pathway in Neuroblastoma Cells Using the Small-Molecule MDM2 Antagonist Nutlin-3

Tom Van Maerken; Ali Rihani; Daniel Dreidax; Sarah De Clercq; Nurten Yigit; Jean-Christophe Marine; Frank Westermann; Anne De Paepe; Jo Vandesompele; Franki Speleman

Suppression of p53 activity is essential for proliferation and survival of tumor cells. A direct p53-activating compound, nutlin-3, was used in this study, together with p53 mutation analysis, to characterize p53 pathway defects in a set of 34 human neuroblastoma cell lines. We identified 9 cell lines (26%) with a p53 loss-of-function mutation, including 6 missense mutations, 1 nonsense mutation, 1 in-frame deletion, and 1 homozygous deletion of the 3′ end of the p53 gene. Sensitivity to nutlin-3 was highly predictive of absence of p53 mutation. Signaling pathways downstream of p53 were functionally intact in 23 of 25 cell lines with wild-type p53. Knockdown and overexpression experiments revealed a potentiating effect of p14ARF expression on the response of neuroblastoma cells to nutlin-3. Our findings shed light on the spectrum of p53 pathway lesions in neuroblastoma cells, indicate that defects in effector molecules downstream of p53 are remarkably rare in neuroblastoma, and identify p14ARF as a determinant of the outcome of the response to MDM2 inhibition. These insights may prove useful for the clinical translation of evolving strategies aimed at p53 reactivation and for the development of new therapeutic approaches. Mol Cancer Ther; 10(6); 983–93. ©2011 AACR.


BMC Research Notes | 2009

RNA pre-amplification enables large-scale RT-qPCR gene-expression studies on limiting sample amounts.

Joëlle Vermeulen; Stefaan Derveaux; Steve Lefever; Els De Smet; Katleen De Preter; Nurten Yigit; Anne De Paepe; Filip Pattyn; Franki Speleman; Jo Vandesompele

BackgroundThe quantitative polymerase chain reaction (qPCR) is a widely utilized method for gene-expression analysis. However, insufficient material often compromises large-scale gene-expression studies. The aim of this study is to evaluate an RNA pre-amplification method to produce micrograms of cDNA as input for qPCR.FindingsThe linear isothermal Ribo-SPIA pre-amplification method (WT-Ovation; NuGEN) was first evaluated by measuring the expression of 20 genes in RNA samples from six neuroblastoma cell lines and of 194 genes in two commercially available reference RNA samples before and after pre-amplification, and subsequently applied on a large panel of 738 RNA samples extracted from neuroblastoma tumours. All RNA samples were evaluated for RNA integrity and purity. Starting from 5 to 50 nanograms of total RNA the sample pre-amplification method was applied, generating approximately 5 microgams of cDNA, sufficient to measure more than 1000 target genes. The results obtained from this study show a constant yield of pre-amplified cDNA independent of the amount of input RNA; preservation of differential gene-expression after pre-amplification without introduction of substantial bias; no co-amplification of contaminating genomic DNA; no necessity to purify the pre-amplified material; and finally the importance of good RNA quality to enable pre-amplification.ConclusionApplication of this unbiased and easy to use sample pre-amplification technology offers great advantage to generate sufficient material for diagnostic and prognostic work-up and enables large-scale qPCR gene-expression studies using limited amounts of sample material.


International Journal of Cancer | 2007

High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors

Jasmien Hoebeeck; Evi Michels; Bj€orn Menten; Nadine Van Roy; Angelika Eggert; Alexander Schramm; Katleen De Preter; Nurten Yigit; Els De Smet; Anne De Paepe; Genevieve Laureys; Jo Vandesompele; Frank Speleman

The recurrent loss of 3p segments in neuroblastoma suggests the implication of 1 or more tumor suppressor genes but thus far few efforts have been made to pinpoint their detailed chromosomal position. To achieve this goal, array‐based comparative genomic hybridization was performed on a panel of 23 neuroblastoma cell lines and 75 primary tumors using a tiling‐path bacterial artificial chromosome array for chromosome 3p. A total of 45 chromosome 3 losses were detected, including whole chromosome losses, large terminal deletions and interstitial deletions. The latter, observed in cell lines as well as a number of distal deletions detected in primary tumors, allowed us to demarcate 3 minimal regions of loss of 3.6 Mb [3p21.31‐p21.2, shortest regions of overlap (SRO)1], 1.4 Mb (3p22.3‐3p22.2, SRO2) and 3.8 Mb (3p25.3‐p25.1, SRO3) in size. The present data significantly extend previous findings and now firmly establish critical regions on 3p implicated in neuroblastoma. Interestingly, the 2 proximal regions coincide with previously defined SROs on 3p21.3 in more frequent tumors including lung and breast cancer. As such, similar tumor suppressor genes may play a critical role in development or progression of a variety of neoplasms, including neuroblastoma.

Collaboration


Dive into the Nurten Yigit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Poppe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Frank Speleman

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge